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I.	 Introduction	
	
The	State	Water	Resources	Control	Board’s	(SWRCB)	August	16,	2012	Revised	Notice	of	
Public	Workshops	and	Request	for	Information	states	the	following	as	questions	to	be	
addressed	in	the	October	1‐2,	2012	workshop:	
	

1.	 What	additional	scientific	information	should	the	State	Water	Board	consider	to	
inform	potential	changes	to	the	Bay‐Delta	Plan	relating	to	Bay‐Delta	fish	
resources,	and	specifically	pelagic	fishes	and	salmonids,	that	was	not	addressed	
in	the	2009	Staff	Report	and	the	2010	Delta	Flow	Criteria	Report?	.	.	.	What	is	the	
level	of	scientific	certainty	or	uncertainty	regarding	the	foregoing	information?	

	
2.	 How	should	the	State	Water	Board	address	scientific	uncertainty	and	changing	

circumstances,	including	climate	change,	invasive	species	and	other	issues?		
Specifically,	what	kind	of	adaptive	management	and	collaboration	(short,	
medium,	and	long‐term),	monitoring,	and	special	studies	programs	should	the	
State	Water	Board	consider	related	to	Bay‐Delta	fisheries	as	part	of	this	update	
to	the	Bay‐Delta	Plan?	

	
This	report	addresses	these	questions	by	reviewing	the	results	of	the	California	
Department	of	Fish	and	Game’s	(DFG)	Fall	Midwater	Trawl	(FMWT)	survey.		Examining	the	
FMWT	data	set	represented	a	logical	first	step	since	the	indices	of	abundance	derived	from	
this	sampling	program	have	been	central	to	recent	state	and	federal	protection	efforts	for	
various	fish	species	inhabiting	the	Delta.		A	number	of	peer‐reviewed	manuscripts	contain	
analyses	that	statistically	relate	the	FMWT	survey’s	abundance	indices	to	environmental	
variables	(e.g.,	X2;	Jassby	et	al.	1995,	Kimmerer	2002,	and	others).		These	studies	have	
generally	concluded	that	there	are	statistically	significant	relationships	between	species	
relative	abundance	and	Delta	flows.			
	
It	is	important	to	recognize,	however,	that	any	index	of	abundance	is	a	synthesis	of	many	
raw	field	observations	(often	hundreds),	so	the	reasonability	of	any	derived	statistical	
relationships	involving	the	FMWT	indices	depends	on	the	assumption	that	the	indices	truly	
reflect	species’	total	abundance.		Upon	careful	review	of	the	FMWT	survey	design	and	
DFG’s	analytical	protocol	for	analyzing	the	FMWT	survey	data,	several	limitations	were	
identified	that	created	questions	regarding	the	representativeness	of	the	indices.			
	
Accordingly,	this	report	contains	a	new	analysis	of	the	FMWT	survey	data	for	six	selected	
species	in	an	effort	to:	(i)	provide	indices	of	relative	abundance	with	estimates	of	precision	
that	were	derived	from	statistically	defensible	methods,	and	(ii)	investigate	the	statistical	
relationships	of	key	covariates	such	as	flow	(Historical	and	Unimpaired	Inflow	and	Outflow)	
and	turbidity	(coarsely	represented	as	Secchi	Depth)	with	the	underlying	FMWT	survey	
data.		Because	the	analysis	in	this	study	was	designed	to	investigate	the	raw	FMWT	survey	
data,	it	directly	addresses	the	foundational	strength	of	the	previously	documented	
statistical	relationships	between	environmental	covariates	and	species	relative	abundance.		
It	also	characterizes	the	underlying	uncertainty	surrounding	those	relationships.		Given	
that	statistical	analyses	of	relationships	between	FMWT	survey	results	and	Delta	flows	
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were	central	to	the	SWRCB’s	2010	Delta	Flow	Criteria	Report,	revisiting	the	data	from	a	
‘first	principles’	perspective	was	appropriate.	
	
The	primary	conclusions	of	this	report	are:					
	

A. The	FMWT	survey	employs	a	fixed	station	design,	which	implies	that	monthly	
trawl	samples	are	collected	at	roughly	the	same	locations	each	year.		This	type	of	
design	limits	the	ability	of	the	FMWT	survey	to	detect	systematic	changes	in	the	
habitat	utilization	of	Delta	species.		Shifts	in	habitat	preferences	by	Delta	species,	
possibly	to	areas	not	sampled	by	the	FMWT,	are	plausible	given	the	physical	and	
environmental	changes	experienced	by	the	Delta	over	the	1967‐2010	FMWT	
survey	period.		Changes	in	relevant	species’	habitat	use	away	from	areas	
routinely	sampled	by	the	FMWT	survey	would	necessarily	manifest	themselves	
in	decreased	indices	of	relative	abundance.	
	

B. The	methods	used	by	DFG	to	calculate	indices	of	abundance	for	Delta	species	do	
not	follow	a	statistically	defensible	protocol.		DFG’s	atypical	estimation	
procedure	results	in	indices	with	units	of	(water	volume)	times	(fish	counts),	
which	are	difficult	to	interpret.		For	example,	what	does	a	change	in	the	longfin	
smelt	index	from	11864	to	7408	(volume)	times	(fish)	units	really	mean	for	
relative	or	total	population	abundance?		Also	missing	from	DFG’s	analysis	
protocol	are	estimates	of	uncertainty	for	the	indices.		Collectively,	the	calculation	
methods	and	lack	of	estimates	of	precision	raise	questions	about	how	
representative	the	indices	are	of	true	abundance,	and	about	the	degree	of	
confidence	associated	with	temporal	patterns	that	they	indicate,	respectively.	

	
C. While	DFG's	data	and	methodology	exhibit	certain	problems	as	described	above,	

given	the	importance	of	DFG's	abundance	indices	to	investigations	of	the	Delta	
species'	status	and	related	regulatory	proceedings,	this	report	contains	a	
statistical	analysis	of	the	relationships	between	the	FWMT	survey	data	and	a	
number	of	environmental	covariates.		Application	of	generalized	linear	models	
(GLMs)	to	the	FMWT	survey	data	for	analysis	of	‘Daily’	covariates	(those	
measured	at	the	same	time	as	sampling),	model	selection	statistics	favored	the	
model	with	Year,	Month,	Region,	and	Secchi	Depth.		All	covariates	were	
statistically	significant	for	all	models	and	species,	with	the	exception	of	one	
species/model	combination.		The	signficance	of	the	Year,	Month,	and	Region	are	
not	overly	surprising,	but	the	importance	of	Secchi	Depth	suggests	that	turbidity	
may	be	an	important	structuring	variable	for	species	in	the	Delta.		All	estimated	
coefficients	of	Secchi	Depth	were	negative,	which	indicates	that	Delta	species’	
relative	abundance	is	higher	under	conditions	of	greater	turbidity	and	lower	
under	conditions	of	lower	turbidity.		Over	recent	decades,	turbidity	in	the	Delta	
has	decreased,	markedly	so	in	the	late	1990s,	so	this	conclusion	is	consistent	
with	documented	water	quality	changes	in	the	Delta.			

	
D. The	temporal	patterns	of	the	indices	estimated	in	this	study	using	peer‐reviewed	

statistical	methods	showed	some	degree	of	qualitative	agreement	to	those	
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provided	by	DFG.		However,	consistent	with	those	peer‐reviewed	methods,	this	
study’s	alternative	estimation	method	was	designed	to	provide	statistically	
appropriate	estimates	of	annual	average‐catch‐per‐tow.		The	scales	of	the	
indices	are	noteworthy.		For	delta	smelt,	the	highest	index	achieved	from	1967‐
2010	was	0.79	average‐catch‐per‐tow	(occuring	in	1970),	and	the	full	time‐
series	average	was	0.17.		For	Sacramento	splittail	and	starry	flounder,	the	
highest	index	values	were	0.13	and	0.14,	with	corresponding	time‐series	
averages	of	0.02	and	0.04,	respectively.		This	indicates	that	the	catch	rate	for	
these	species	has	been	less	than	1.0	fish‐per‐tow	(on	average)	over	the	life	of	the	
FMWT	survey.		Relative	to	other	similar	fish‐sampling	trawls	in	the	United	States	
that	are	believed	to	provide	reliable	measure	of	relative	abundance,	several	of	
the	FWMT's	catch	rates	are	quite	low.		Low	encounter	rates	(frequency	of	tows	
that	capture	target	species)	combined	with	generally	low	overall	numbers	of	fish	
collected	following	successful	encounters	underpin	the	low	estimated	index	
values.		Such	consistently	low	index	values	raise	legitimate	questions	about	the	
efficacy	of	the	FMWT	program	in	providing	measures	of	relative	abundance	that	
track	patterns	in	true	abundance.	

	
E. In	contrast	to	DFG's	abundance	indices,	the	newly‐derived	species	abundance	

indices	in	this	report	are	associated	with	statistically‐derived	estimates	of	
precision.		The	estimated	coefficients	of	variation	(CV)	for	all	species	were	
generally	acceptable,	with	most	values	ranging	between	0.2‐0.45.		Higher	CVs	
were	estimated	for	periods	within	the	time‐series	for	Sacramento	splittail,	starry	
flounder,	and	Crangon	spp.		The	CVs	for	starry	flounder	were	consistently	higher	
than	those	of	the	other	species,	which	is	likely	related	to	the	unreliability	of	a	
midwater	trawl	for	sampling	a	predominately	bottom‐dwelling	flatfish	species.	

	
F. This	study	analyzed	the	statistical	relationships	between	the	species'	abundance	

and	16	different	variations	of	Delta	streamflow	measures	(technically,	
"covariates").1		GLMs	were	fitted	to	the	FMWT	survey	data	and	model	selection	
statistics	indicated	that	the	flow	covariate	within	the	‘best’	fitting	model	varied	
by	model	type	and	species.		The	flow	covariate	that	‘best’	explained	variation	in	
species’	relative	abundance		often	was	the	Unimpaired	Inflow	(defined	as	
Sacramento	River	plus	Yolo	Bypass)	covariate,	which	is	largely	an	unmanageable	
flow	variable.		Within	the	‘best’	fitting	models,	all	flow	covariates	and	Secchi	
Depth	were	statistically	significant	(with	an	exception	of	Secchi	Depth	for	one	
species/model	combination).		The	statistical	analysis,	however,	produced	the	
following	conclusions:	

	

                                                 
1 The	four	base	measures	of	those	flow	variables	are	Unimpaired	Inflow,	Unimpaired	Outflow,	Historical	Inflow	
and	Historical	Outflow.		(Inflow	used	in	this	study	is	defined	as	Sacramento	River	plus	Yolo	Bypass.)		Each	of	
those	variables	then	was	analyzed	using	four	different	averaging	periods,	specifically	January‐June,	March‐
May,	January‐June	with	a	one‐year	lag	and	March‐May	with	a	one‐year	lag,	producing	16	different	flow	
covariates	used	in	the	statistical	analysis.		The	averaging	periods	are	based	on	the	use	of	similar	averaging	
periods	for	Category	A	criteria	in	the	SWRCB's	2010	Delta	Flow	Criteria	Report. 
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a. Turbidity	has	a	stronger	statistical	relationship	with	species	abundance	
than	flow.		The	strengthes	of	the	statistical	relationships	of	the	FMWT	
survey	data	with	Secchi	Depth	were	greater	than	those	with	flow	(again	
with	the	aforementioned	species/model	exception).		This	result	suggests	
that	turbidity	may	have	a	stronger	structuring	influence	on	the	FMWT	
survey	data	than	flow.			
	

b. Small	and	variable	statistical	relationship	between	abundance	and	flow		
The	coefficients	between	flow	covariates	and	species	relative	abundance	
are	small	and,	at	times,	inverse.		In	particular,	delta	smelt	abundance	
showed	a	small,	but	statistically	significant,	inverse	relationship	with	the	
'best'	fitting	flow	covariate,	meaning	that	the	species'	relative	abundance	
declined	as	that	flow	covariate	increased.	

	
c. Uncertain	effect	of	manageable	flow	variables.	Although	flow	covariates	

and	Secchi	Depth	showed	statistically	significant	relationships	with	
species	relative	abundance,	the	amount	of	underlying	variation	in	the	
data	is	substantial	and	suggests	that	it	is	highly	uncertain	whether	
changes	in	manageable	flow	variables	will	generate	any	statistically‐
predictable	increases	in	the	relative	abundances	of	Delta	species.		In	
particular,	given	the	wide	variations	in	species	relative	abundance	over	
the	1967‐2010	FWMT	survey	period,	the	small	statistical	relationships	
between	flow	covariates	and	abundance	suggest	that	other	
environmental	factors	have	more	of	an	effect	on	abundance.	

	
Recommendations	for	Further	Analysis,	Monitoring	and	Special	Studies	
The	above	conclusions	suggest	that	the	SWRCB’s	consideration	of	updates	to	the	Bay‐Delta	
Plan	would	be	benefited	by	implementation	of	the	following	additional	analyses,	
monitoring	and	special	studies	programs	(many	of	which	could	be	conducted	with	existing	
resouces):	
	

1) Derivation	of	indices.		Despite	the	historic	lineage	of	the	methods	used	by	DFG	to	
calculate	indices	of	relative	abundance	from	the	FMWT	survey	data,	the	lack	of	use	
of	well	established	statistical	methods	that	can	also	provide	estimates	of	precision	
limits	the	interpretation	of	population	status	of	Delta	species.		In	contrast,	the	
results	stated	in	this	report	demonstrate	a	statistical	model‐based	approach	that	
could	be	used	routinely	without	additional	fieldwork.		There	are	other	defensible	
approaches	as	well.		In	short,	consistently	applying	to	the	FMWT	data	peer‐reviewed	
analytical	techniques	for	evaluating	survey	data	would	significantly	increase	the	
understanding	of	fish	abundance	patterns	that	are	important	for	policy	decision	
making.		Applying	such	techniques	to	the	FWMT	data	in	the	SWRCB's	present	
proceeding	would	be	possible	without	significant	new	investments	in	staffing	or	
equipment.	
	

2) Sampling	intensity	of	the	FMWT	survey.		It	is	unclear	how	it	was	determined	to	use	
the	current	number	of	sampling	stations	for	the	FMWT	survey.	Field	work	is	
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expensive,	so	it	would	seem	important	to	know	if	the	current	level	of	sampling	
intensity	is	needed	to	achieve	desired	levels	of	precision.		It	is	possible	that	it	can	be	
shown	statistically	that	less	sampling	effort	can	lead	to	indices	with	acceptable	
associated	estimates	of	error.		Such	a	finding	then	could	free	up	valuable	time,	staff,	
and	money	that	could	be	redirected	to	improve	understanding	of	Delta	species	in	
several	ways:	
	

a. Pilot	studies	directed	at	sampling	locations/depths/habitats	besides	those	
traditionally	sampled	by	the	FMWT	survey.		In	effect,	such	pilot	studies	
would	explore	through	field	observations	whether	or	not	Delta	species	have	
undergone	systematic	shifts	in	habitat	utilization	over	time	and	space.	
	

b. Pilot	studies	to	investigate	through	field	observations	how	the	diel	
movements	of	Delta	species	(if	at	all)	affect	availability	to	the	trawl	survey	
net.	

	
c. Pilot	studies	designed	to	evaluate	trawl	net	performance	and	consistency	

under	different	tidal	and	flow	conditions.		Side	scan	sonar	and	flume	testing	
are	untapped	technologies	that	could	be	used	to	investigate	the	consistency	
of	gear	geometry	and	thus	the	catchability	of	species	across	various	typical	
tidal	and	flow	conditions	within	the	Delta.	

	
3) Deeper	investigation	of	fish	abundance	in	relation	to	turbidity.		The	emergence	of	

Secchi	Depth	as	an	important	variable	indicates	that	more	refined	analyses	should	
be	conducted	to	analyze	how	turbidity	structures	biotic	communites	within	the	
Delta.		By	definition	Secchi	Depth	is	a	coarse	measurement	of	turbidity,	so	
investigating	the	effects	of	more	direct	measures	of	turbidity	on	Delta	species	
relative	abundance	is	a	natural	next	step.		Such	an	analysis	could	be	statistical	and	
could	be	conducted	within	the	SWRCB's	existing	process	by	comparing	species	
abundance	data	with	more	robust	measures	of	Delta	turbidity.		For	example,	if	
available,	monitoring	data	on	suspended	sediment	concentrations	in	the	Delta	could	
be	used	as	statistical	covariates	of	Delta	species	abundance.									
	

4) Spatiotemporal	analyses	of	habitat	utilization.		Following	from	2a	above,	exploration	
through	focused	statistical	analyses	of	existing	FMWT	survey	data	of	whether	or	not	
Delta	species	have	undergone	systematic	shifts	in	habitat	utilization	over	time	and	
space.		For	example,	as	discussed	later	in	this	report,	the	FWMT	survey	is	based	on	
trawl	tows	within	14	regions	of	the	Delta	and	an	associated	Region	factor	is	
recorded	for	each	such	tow.		A	statistical	analysis	could	be	conducted	within	the	
SWRCB's	existing	process	to	determine,	based	on	the	relationship	of	this	Region	
factor	to	species	abundance	over	the	1967‐2010	FWMT	survey	period,	whether	
there	are	meaningful	trends	in	the	locations	within	the	Delta's	regions	where	
species	of	interest	have	been	caught.		Such	an	analysis	could	be	based	on	existing	
data	and	would	not	require	additional	field	work.	
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5) Process	oriented	studies.		Consider	‘simultaneous’	deployment	of	different	sampling	
methods,	such	as	fish	trawl	nets	and	plankton	nets,	to	synoptically	understand	how	
predators	and	key	prey	are	collectively	distributed	in	the	environment.		Ongoing	
fish	diet	studies	would	benefit	from	such	synthetic	data	since	prey	selectivity	could	
be	inferred,	which	would	aid	the	understanding	of	food	web	dynamics	in	the	Delta.		
As	discussed	in	recommendation	2)	above,	if	additional	resources	would	be	
necessary	to	conduct	such	studies,	those	resources	potentially	could	be	acquired	by	
changing	existing	sampling	methods	while	still	maintaining	statistically	acceptable	
rates	of	precision	in	the	resulting	abundance	data.	
	

The	real	costs	of	monitoring	programs	are	vessel	time,	fuel,	gear,	and	personnel.		Getting	
out	in	the	field	with	a	competent	crew	is	no	easy	task.		Once	such	a	task	has	been	achieved,	
it	is	important	to	implement	sampling	and	statistical	protocols	that	maximize	not	only	the	
data	collected	in	both	types	and	amounts,	but	also	the	understanding	of	fish	population	
dynamics	that	can	be	derived	from	the	data.			
	
II.	 Methods	and	Background	
	
In	the	present	study,	analyses	designed	to	investigate	the	relationships	of	fish	abundance	
and	Delta	flows,	along	with	other	biological,	environmental,	and	sampling	covariates	were	
based	on	data	collected	by	DFG’s	FMWT	survey.		Examining	the	FMWT	data	set	represented	
a	logical	first	step	since	the	indices	of	abundance	derived	from	this	sampling	program	have	
been	central	to	recent	state	and	federal	protection	efforts	for	various	fish	species	inhabiting	
the	Delta.		The	focal	species	of	this	report	are:	delta	smelt	(Hypomesus	transpacificus),	
longfin	smelt	(Spirinchus	thaleichthys),	starry	flounder	(Platichthys	stellatus),	Sacramento	
splittail	(Pogonichthys	macrolepidotus),	threadfin	shad	(Dorosoma	petenense),	and	a		
combined	shrimp	group	(Crangon	spp.).	
	
All	FMWT	survey	data	and	associated	program	protocol	documents	were	graciously	
provided	via	an	ftp	site	by	Dave	Contreras,	DFG.		This	data	set	contains	the	CPUE	
information	for	all	target	species	along	with	the	associated	sampling	metadata	(e.g.,	Year,	
Month,	and	Region	of	sampling)	and	several	environmental	covariates	(e.g.,	Temperature,	
Salinity,	and	Secchi	Depth).		Monthly	flow	values	for	four	flow	variables	were	provided	via	
email	by	Walter	Bourez,	MBK	Engineers,	following	personal	communication.	
	

A.		Brief	life	history	review	of	relevant	species	
	
Delta	smelt:	This	species	is	one	of	six	along	the	Pacific	Rim	currently	associated	with	the	
genus	Hypomesus.		Delta	smelt	are	relatively	small	and	attain	a	maximum	size	of	
approximately	80	mm	total	length	(TL).		These	fish	have	a	fairly	restricted	home	range	and	
are	most	abundant	in	the	lower	salinity	portions	of	estuaries.		Delta	smelt	are	primarily	an	
annual	species,	with	some	individuals	surviving	two	years.		This	life	history	strategy	
implies	that	persistence	of	the	population	is	driven	by	maximizing	growth,	survival,	and	
reproductive	success	on	an	annual	basis.		Loss	of	just	one	year‐class	can	be	very	
detrimental,	since	an	annual	life	cycle	is	not	inherently	designed	to	overcome	failed	year‐
classes.		Delta	smelt	are	semi‐anadromous	meaning	that	they	migrate	to	freshwater	for	
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spawning,	but	do	not	spend	some	portion	of	their	life	in	oceanic	waters.		Transitioning	from	
estuarine	to	fresh	waters	for	the	purposes	of	spawning	is	sufficient	to	be	semi‐anadromous.		
Delta	smelt	larvae	are	most	prevalent	from	mid‐April	through	May,	which	suggests	that	
spawning	begins	in	late	February	to	March.		In	general,	delta	smelt	are	considered	to	be	
planktivorous	and	rely	on	various	copepod	prey	throughout	life.	
	
Longfin	smelt:		This	species	is	a	small	pelagic	fish	that	also	has	a	relatively	short	life	span.		
Most	longfin	smelt	live	only	two	years,	although	some	three‐year‐old	individuals	have	been	
observed.		Longfin	smelt	inhabit	estuaries,	bays,	and	near	coastal	habitats,	and	their	spatial	
distribution	within	the	estuary	varies	seasonally.		Typically,	longfin	smelt	are	found	down	
estuary	during	summer	and	farther	upstream	during	cooler	months.		This	species	is	fully	
anadromous	implying	that	it	spends	part	of	its	life	in	oceanic	waters	and	migrates	to	into	
freshwater	rivers	to	spawn.		Maturity	is	reached	at	two	years	of	age	and	spawning	occurs	
primarily	at	night	during	the	months	of	February	through	April.		Longfin	smelt	engage	in	
daily	migrations	within	the	water	column	such	that	during	daylight	hours	these	fish	inhabit	
deeper	habitats	while	during	night	they	can	be	found	near	the	surface.		This	diel	migration	
coincides	with	feeding	as	most	longfin	smelt	prey	on	various	types	of	zooplankton,	which	
are	more	ubiquitous	in	the	water	column	during	night.		Longfin	smelt	reach	sizes	of	6‐7	cm	
standard	length	(SL)	by	9‐10	months	of	age,	and	maximum	size	is	generally	15	cm	SL.							
	
Starry	flounder:		This	species	is	typically	found	in	oceanic	and	estuarine	waters	with	rare	
occurences	in	freshwater.		Starry	flounder	are	commercially	and	recreationally	valuable,	
prosecuted	primarily	by	bottom	trawls	offshore	and	anglers	from	piers	and	boats	in	
estuarine	habitats.		In	California,	starry	flounder	peak	spawning	occurs	from	November	to	
February	and	larvae	are	advected	into	nursery	habitats	within	estuaries.		As	with	many	
flatfishes,	starry	flounder	exhibit	sexual	dimorphic	growth	and	maturation,	with	males	
maturing	earlier	than	females	(ages	2‐3	vs	4‐6)	and	attaining	generally	smaller	maximum	
sizes	than	females.		Maximum	age	has	been	reported	to	be	21	years.		Starry	flounder	feed	
on	a	variety	of	prey	types	throughout	their	life	cycle,	ranging	from	plankton	at	younger	
ages	to	shrimp,	crabs,	and	small	fishes	at	older	ages.		
	
Sacramento	splittail:		This	species	is	a	cyprinid	and	the	Sacramento‐San	Joaquin	Delta	
serves	as	the	center	point	of	its	home	range.		Splittail	can	live	up	to	8‐10	years,	but	
longevity	is	typically	not	longer	than	5	years	of	age.		Maturity	is	generally	reached	in	two	
years	and	peak	spawning	occurs	from	March	through	April.		The	distribution	of	splittail	
fluctuates	seasonally	and	annually,	however,	the	general	distributional	pattern	of	this	
species	suggests	that	fish	reside	in	the	estuary	proper	during	summer	and	early	fall	with	
adults	migrating	upstream	for	spawning	during	late	fall	and	early	spring.		Splittail	forage	
primarily	on	benthic	organisms	during	daylight.		Key	prey	types	include	copepods,	
opossum	shrimp,	and	amphipods,	although	detritus	is	often	a	large	portion	of	what	has	
been	observed	in	the	stomachs	of	this	species.		Splittail	are	targeted	by	recreational	anglers	
but	the	scale	of	removals	and	fishing	mortality	is	largely	unknown.	
	
Threadfin	shad:		This	species	is	a	schooling	pelagic	forage	fish	and	a	member	of	the	family	
Clupeidae.		Threadfin	shad	rarely	exceed	100	mm	in	length	and	can	be	found	in	brackish	
and	freshwater	habitats.		Maximum	age	has	been	reported	to	be	four	years,	but	longevity	of	
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most	fish	is	2‐3	years.		Although	threadfin	shad	inhabit	lower	salinity	habitats,	freshwater	
is	necessary	to	support	successful	spawning.		In	California,	threadfin	shad	typically	spawn	
from	April	to	August	in	and	around	areas	with	structure,	usually	submerged	aquatic	
vegetation.		During	all	life	stages,	threadfin	shad	are	planktivorous	and	feed	on	primarily	
on	crustacean	zooplankton.		This	species	was	intentionally	introduced	into	several	
California	aquatic	ecosystems	in	the	early	1950s	primarily	to	provide	forage	for	key	
sportfishes.	
	
Crangon	spp.:		This	shrimp	group	is	considered	to	provide	a	key	role	in	ecosystem	
functioning	primarily	as	prey	for	higher	trophic	levels,	but	also	as	predators	of	various	
planktonic	organisms,	particularly	ichthyoplankton.						
	

B.	 FMWT	Survey	Design	and	Sampling	Protocol	
	

The	FMWT	survey	has	operated	annually	in	the	San	Francisco	Estuary	(referred	to	herein	
as	Delta)	since	1967,	with	the	exception	of	1974,	portions	of	1976	and	1979.		The	‘index	
period’	for	many	
targeted	fishes	in	the	
Delta,	which	is	defined	
to	be	the	‘temporal	
window’	where	
sampling	activities	are	
believed	to	provide	
representative	
abundance	
information,	has	
historically	been	
designated	as	the	
autumn	months.		
Consequently,	the	data	
germane	to	the	present	
study	were	those	
derived	from	sampling	
activities	occurring	in	
the	months	of	
September	through	
December	each	year.			
	
The	survey	follows	a	
stratified	fixed	station	
design	such	that	
sampling	occurs	at	
approximately	the	same	locations	each	month	within	predefined	strata	(Figure	1).		At	each	
sampling	location,	a	ten	minute	oblique	tow	is	made	from	near	bottom	to	the	surface	using	
a	square	midwater	trawl	(mouth	opening	3.7m2)	with	variable	mesh	in	the	body	of	the	
trawl	net	(20.3	to	2.5cm)	and	a	1.3cm	stretch	mesh	cod	end.		Each	catch	is	sorted,	

Figure	1.	Areal	stratification	of	the	Fall	Midwater	Trawl	Survey	(numbered	
polygons)	and	fixed	sampling	locations	within	each	stratum	(dots).		Strata	2,	6,	
and	9,	have	not	been	sampled	since	1973	and	are	thus	omitted	from	the	map.		
The	above	image	was	taken	from	Newman	(2008). 
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enumerated	by	species,	and	growth	information	(length,	weight)	is	recorded	for	all	fish	
captured	or	species‐specific	subsamples	in	the	case	of	large	catches.		Over	the	course	of	the	
survey,	the	number	of	stations	sampled	per	month	during	autumn	has	ranged	from	
approximately	70‐80	during	the	1960s‐1970s	to	95‐100	from	the	late	1990s	to	the	present.	
	

C.	 Calculation	of	Abundance	Indices	from	the	FMWT	survey	
	
DFG	calculates	the	annual	FMWT	survey	index	for	any	given	species	as	the	sum	of	four	
monthly	indices.		The	calculation	of	each	monthly	index	is	based	on	the	arithmetic	mean	
catch‐per‐tow	for	stations	within	each	of	the	14	areas	or	strata	delineated	in	Figure	1.		
Formally,	the	mean	catch	in	month	m	and	area	a,	denoted	as	 ̅ , ,	is	given	by:		

																																																																		 	 ,
1

, , 																																																		eq	 1 										

                                                                                                                            
where	na	is	the	number	of	stations	in	area	a	and	cm,a,s	is	the	number	of	fish	captured	during	
month	m	in	area	a	at	station	s.				The	overall	monthly	index,	 ,	is	a	weighted	sum	of	the	
mean	catches	by	month	and	area,	which	can	be	expressed	as:	
	

																																																																						 ̅ , 																																																								eq	 2 	

	
where	wa	is	the	weight	for	area	a	defined	to	be	an	estimate	of	the	water	volume	in	each	
area	in	ten	thousands	of	acre	feet.		In	summary,	the	monthly	abundance	index	calculated	by	
DFG	from	the	FMWT	data	is	the	average	number	of	fish	caught	in	a	given	area	multiplied	by	
the	estimated	water	volume	of	that	area,	summed	up	over	the	14	areas	sampled	by	the	
survey.		
	
III.	 Analysis	
	

A.	 Notable	Limitations	of	the	FMWT	Survey	
	
A	reasonable	guiding	principle	that	can	be	used	to	evaluate	any	fish	monitoring	program	is	
as	follows:	if	the	consistency	of	survey	practices	is	subject	to	appreciable	error	over	any	
measurable	axis,	then	automatically	we	must	question	the	representativeness	of	data	
derived	from	that	sampling	program.	
	
Bennett	(2005)	and	Newman	(2008)2	both	articulated	several	important	concerns	
regarding	the	methods	(both	field	and	analytical)	DFG	has	used	to	derive	indices	of	
abundance	from	the	FMWT	survey	data.		Bennett’s	study	is	more	of	a	general	review	

                                                 
2The	institutions	of	employment	for	W.	Bennett	and	K.	Newman	are	the	John	Muir	Institute	of	the	
Environment,	Bodega	Marine	Laboratory,	University	of	California,	Davis	and	the	U.S.	Fish	and	Wildlife	Service,	
respectively.	
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whereas	Newman’s	manuscript	is	a	technical	summary	with	analytical	advancements.		
Many	of	the	criticisms	noted	by	these	authors	also	are	conclusions	of	this,	which	I	initially	
arrived	at	independently	and	later	confirmed	following	review	of	Bennett	(2005)	and	
Newman	(2008).		Below	is	a	summary	of	the	concerns	surrounding	the	FMWT	survey	
(purposely	relying	on	those	articulated	by	Newman	(2008))	along	with	some	additional	
commentary	brought	out	by	this	study.		Woven	into	the	summary	of	each	point	are	
comments	regarding	the	interpretability	of	the	published	FMWT	survey	indices	as	true	
measures	of	target	species	abundance.		
	

1.	 Survey	Design	and	Analytical	Methods	for	Calculating	Indices	
	
Following	from	eq	(2),	the	units	of	the	annual	FMWT	indices	are	sums	of	water	volumes	of	
each	area	times	average	fish	counts	for	each	area,	rather	than	a	measure	of	fish	counts	
alone.		The	units	of	any	survey	program	are	a	direct	function	of	how	the	indices	themselves	
are	derived,	so	in	effect,	criticism	of	the	units	of	the	FMWT	survey	indices	amounts	to	
criticism	of	the	methods	used	for	calculation.		In	general,	the	purpose	of	analyzing	survey	
data	is	to	produced	an	index	value	defined	to	be	an	unbiased	estimate	of	the	average	catch‐
per‐unit‐effort	(CPUE).		DFG’s	indices	are	not	average	CPUEs,	which	renders	it	very	difficult	
to	interpret	the	meaning	of	the	values	they	take	on	in	the	context	of	relative	or	total	
abundance	of	Delta	species.		Additional	details	regarding	how	DFG’s	calculation	methods	of	
abundance	indices	do	not	conform	with	standard	treatments	of	survey	data	are	discussed	
below.								
	
First,	in	the	case	of	the	FMWT	survey,	the	standard	unit	of	sampling	effort	is	defined	to	be	a	
single	trawl	tow,	although	it	is	possible	to	express	effort	as	water	volume	sampled	since	
these	measurements	have	been	recorded	via	flowmeters	since	1985.		The	FMWT	indices	
are	quasi‐averages	meaning	that	a	weighted	mean	CPUE	is	calculated.		However,	those	
weighted	means	are	not	divided	by	the	sum	of	the	weighting	factors,	which	is	necessary	
when	deriving	an	estimate	of	a	mean	from	a	stratified	sampling	design	(Cochran	1977).		
DFG’s		use	of	the	arithmetic	mean	estimator	inherently	assumes	that	the	underlying	
observations	follow	a	normal	distribution	(the	familiar	symetrical	bell	curve),	which	is	not	
generally	the	case	with	fish	survey	data.		By	definition,	surveys	should	sample	locations	
without	pre‐existing	knowledge	of	the	abundances	of	the	target	species	at	these	locations	
in	an	effort	to	maintain	an	unbiased	approach	to	measuring	abundance.		Consequently,	
CPUE	data	tend	to	be	positively	skewed,	which	means	that	over	the	course	of	a	sampling	
month	or	year,	the	survey	program	accumulates	high	frequencies	of	low	catches	and	low	
frequencies	of	high	catches,	largely	because	the	core	habitat	area	of	most	fishes	is	far	
smaller	than	the	total	survey	area.		The	bell	curve	of	a	normal	probability	distribution	is	not	
a	good	match	for	these	data	since	there	are	not	symmetric	frequencies	of	CPUE	
observations	around	some	type	of	central	value.		The	arithmetic	mean	of	samples	is	only	an	
unbiased	estimator	of	the	population	mean	if	the	underlying	data	follow	the	normal	
distribution,	and	inspection	of	simple	annual	histograms	of	the	FMWT	CPUE	data	from	
1967‐2010	suggest	that	the	normality	assumption	is	not	met.		Thus,	the	use	of	the	
arithmetic	mean	by	the	DFG	in	its	calculation	of	abundance	indices	from	the	FMWT	data	is	
questionable.			
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Second,	DFG’s	use	of	a	fixed	station	design	is	problematic	since	changes	in	the	distribution	
and	habitat	utilization	of	target	species	are	inherently	confounded	with	changes	in	the	
measured	abundances	at	sampling	locations.		For	example,	suppose	that	the	abundance	of	a	
particular	fish	species	is	constant	over	two	consecutive	years,	but	that	in	the	second	year	
there	is	a	shift	in	habitat	utilization	such	that	an	appreciable	fraction	of	fish	move	to	areas	
not	sampled	by	the	FMWT	survey.		Modest	shifts	in	annual	habitat	use	by	fishes	are	
plausible	and	often	driven	by	year‐to‐year	variability	in	environmental	conditions.		As	a	
result,	in	the	above	example,	a	habitat	shift	in	year	two	away	from	locations	routinely	
sampled	by	the	FMWT	would	lead	to	a	lower	index	of	abundance	even	though	total	
abundance	has	remained	constant	over	the	two‐year	time	frame.				
	
Lastly,	although	the	core	function	of	surveys	is	to	provide	indices	of	relative	abundance,	
equally	important	are	estimates	of	precision	for	those	indices,	and	such	estimates	are	
absent	from	the	analytical	procedures	used	by	the	DFG	in	its	treatment	of	the	FMWT	survey	
data.		Newman	(2008)	used	a	design‐based	estimation	procedure	to	provide	variance	
estimates	of	total	delta	smelt	abundance	estimates,	so	some	progress	has	been	made.		
However,	more	progress	is	needed	and	the	efforts	of	this	study	to	rework	the	derivation	of	
indices	from	the	FMWT	survey	data	with	associated	estimates	of	coefficients	of	variation	
(CVs)	can	be	viewed	as	an	additional	advancement.			
	

2.	 Consistency	of	Trawl	Gear	Performance	
	
It	has	been	documented	by	Newman	(2008)	and	acknowledged	by	DFG	staff	(via	FMWT	
survey	protocol	document	reviewed	by	R.J.	Latour)	that	the	volume	of	water	sampled	by	
the	trawl	can	vary	considerably	between	tows.		Consistency	of	gear	performance	in	the	
field	across	time	and	space	is	paramount	to	any	survey	program,	since	changes	in	survey	
indices	are	assumed	to	reflect	changes	in	the	underlying	abundance	of	target	species.		If	
tow	volumes	between	stations	by	area,	month,	and/or	year	change	substantially,	then	the	
area	weights	should	also	change	(Newman	2008).		DFG’s	analytical	protocol	for	the	FMWT	
survey	data	does	not	reflect	this	idea.			
	
For	illustration	of	this	point,	Newman	(2008)	provided	the	following	simple	example.		If	the	
true	abundance	of	a	particular	fish	species	is	the	same	in	a	given	area	and	month	for	two	
consecutive	years,	but	the	volume	filtered	in	each	tow	during	the	second	year	was	twice	the	
volume	filtered	in	the	first	year,	then	application	of	constant	weighting	factors	would	yield	
an	index	for	year	two	that	is	approximately	twice	that	of	year	one,	even	though	true	
abundance	remained	constant	over	time.		Although	Newman	(2008)	suggested	that	the	
scale	of	changes	in	delta	smelt	population	over	time	have	been	large	enough	to	mitigate	the	
effects	of	inaccuracies	due	to	variation	in	volume	sampled,	the	issue	itself	speaks	to	the	
concept	of	tow	standardization.			
	
Along	those	lines,	my	review	of	protocol	documents	associated	with	the	FMWT	program	
did	not	reveal	any	summaries	of	attempts	by	DFG	staff	to	investigate	consistency	of	gear	
geometry	during	tows.		Over	the	past	decade,	fish	sampling	programs	and	commercial	
fishers	in	North	America	have	made	significant	efforts	to	use	various	technologies	to	
understand	net	behavior	under	different	tidal	conditions	and	over	different	substrate	types	
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(R.J.	Latour,	personal	observations).		Equiping	trawl	nets	with	hydroacoustic	sensors	that	
provide	real‐time	measurements	of	door	spread,	headline	height,	bottom	contact,	wing	
spread,	and	many	other	parameters	has	been	by	far	the	most	popular	method.		Examples	of	
programs	that	routinely	use	hydroacoustic	mensuration	gear	include:	fish	trawl	surveys	
operated	in	the	U.S.	by	the	National	Marine	Fisheries	Services	and	the	Virginia	Institute	of	
Marine	Science	(VIMS),	trawl	surveys	under	the	direction	of	the	Department	of	Fisheries	
and	Oceans	in	Canadian	waters,	and	the	majority	of	the	commercial	trawling	fleet	that	
targeting	groundfishes,	herring,	and	squid	stocks	off	the	New	England	coast	and	within	the	
mid‐Atlantic	Bight.			
	
The	relatively	small	size	of	the	net	used	by	the	FMWT	survey	may	make	the	use	of	
hydroacoustic	net	mensuration	gear	logistically	challenging.		Nevertheless,	side	scan	sonar	
and	flume	testing	represent	seemingly	untapped	viable	alternatives	to	gain	insight	about	
the	FMWT	net	geometry.		Note	that	the	Centre	for	Sustainable	Aquatic	Resources	at	
Memorial	University,	Newfoundland,	Canada	has	the	largest	flume	tank	in	the	world	and	
routinely	tests	trawl	net	performance	for	both	standardized	survey	programs	and	
commercial	fishers.		The	absence	of	some	type	of	independent	verification	of	gear	
performance	should	raise	legitimate	questions	regarding	the	FMWT’s	ability	to	maintain	
consistent	towing	over	time	and	space,	and	therefore	the	representativeness	of	the	
abundance	indices	derived	from	FMWT	survey	data.					
	

3.	 Size	Selectivity	of	FMWT	Survey	Gear		
	
Another	criticism	of	the	FMWT	survey	is	that	the	trawl	gear	is	size‐selective	and	that	index	
calculation	methods	do	not	account	for	this	issue.		Size‐selectivity	refers	to	the	idea	that	the	
sampling	net	systematically	collects	animals	of	a	particular	size	range	that	is	different	than	
the	actual	size	range	of	the	target	species	in	the	environment.		If	all	sizes	of	a	particular	
species	are	not	equally	vulnerable	to	the	sampling	gear,	then	the	numbers	of	fish	caught	at	
at	any	given	location	may	not	be	representative	of	the	true	total	abundance	at	that	location	
(e.g.,	many	‘large’	or	many	‘small’	fish	are	not	captured	by	the	gear).		In	fairness,	all	
sampling	gear	is	size‐selective	to	some	degree,	so	this	concern	is	not	unique	to	the	FMWT	
program.		And	on	positive	note,	a	covered	cod‐end	experiment	was	conducted	in	
investigate	selectivity	for	the	FMWT	net	and	selectivity	estimates	for	delta	smelt	derived	
from	modern	statistical	techniques	were	provided	by	Newman	(2008),	so	good	progress	in	
this	area	has	been	made.	
	

4.	 Use	of	a	Four	Month	‘Index	Period’	
	
The	final	criticism	of	the	FMWT	survey	involves	questioning	the	utility	of	an	annual	index	
derived	from	monthly	sampling	over	a	protracted	time	period	(four	months),	since	doing	
so	relies	on	the	assumption	that	the	month‐to‐month	survival	pattern	of	target	species	is	
constant	over	years.		This	issue	can	be	mitigated	by	either	providing	monthly	estimates	of	
abundance	(as	done	so	by	Newman	(2008))	or	by	reducing	the	‘index	period’	(i.e.,	number	
of	months	for	which	data	are	used	to	estimate	indices)	to	be	reflective	of	a	perceived	
optimal	time	window	for	which	the	FMWT	survey	is	believed	to	provide	the	best	measure	
of	abundance	for	the	species	under	consideration.		It	should	be	noted	that	while	it	may	be	
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desirable	to	reduce	the	‘index	period’	to	fewer	than	four	months	as	a	means	of	addressing	
the	between	year	variation	in	monthly	survival	problem,	doing	so	should	be	based	on	a	
rigorous	temporal	analysis	of	existing	data.		Moreover,	a	similar	argument	can	be	made	to	
consider	modifying	the	spatial	domain	used	to	derive	indices	of	abundance.		The	current	
analytical	protocol	assumes	that	spatial	patterns	of	survival	within	months	are	constant	
over	years,	which	may	not	be	plausible	given	the	alterations	that	the	Delta	has	experienced	
over	the	course	of	the	past	decades.		Particular	areas	within	the	Delta	that	were	once	key	
habitat	for	target	species	may	no	longer	be,	and	vice	versa,	so	a	rigorous	spatial	
examination	of	existing	data	may	also	be	warranted.		
	

B.	 Alternative	Approach	to	Estimation	of	Indices	and	Testing	of	Covariates	
	

Given	the	aforementioned	analytical	limitations	of	the	DFG’s	protocol	for	deriving	indices	
of	abundance	for	fishes	in	the	Delta,	the	results	of	review	of	several	reports	and	peer‐
reviewed	manuscripts,	and	the	interest	in	investigating	the	role	of	various	environmental	
covariates	(particularly	flow)	on	abundance	of	key	fish	species	in	the	Delta	expressed	in	the	
SWRCB’s	2010	Delta	Flow	Criteria	Report	an	independent	analysis	of	the	FMWT	survey	
data	was	warranted.		Specifically,	while	that	FMWT	survey	data	has	certain	limitations	that	
demonstrate	uncertainty	about	trends	in	the	abundance	of	Delta	fish	species,	those	data	
have	been	the	primary	basis	for	management	decisions	concerning	those	species.		An	
analysis	of	the	relationships	between	trends	in	that	survey	data	and	relevant	
environmental	factors	therefore	may	be	important	for	the	SWRCB’s	consideration	of	new	
Delta	flow	objectives.	
	
The	analysis	of	fish	survey	data	can	typically	take	one	of	two	paths:	(i)	if	the	field	
operations	of	the	program	follow	a	known	and	defensible	sampling	design	(e.g.,	stratified	
random	sampling	approach),	then	design‐based	estimation	methods	can	be	utilized,	or	(ii)	
if	the	field	procedures	do	not	closely	align	with	a	theoretically	established	design	and/or	
there	is	interest	in	standardizing	the	index	for	the	influence	of	covariates,	then	a	model‐
based	approach	can	be	utilized.		The	analyses	conducted	by	Newman	(2008)	are	an	effort	
to	overcome	some	of	the	analytical	limitations	of	DFG’s	protocol	through	the	use	of	design‐
based	methods.		In	the	discussion	section	of	that	manuscript,	the	author	also	noted	that	
model‐based	inference	is	a	viable	alternative	and	fruitful	area	of	further	research.		The	
analyses	in	this	study	can	therefore	be	viewed	as	complementary	to	those	of	Newman	
(2008)	and	in	the	spirit	of	fulfilling	the	need	for	future	research	identified	by	Newman	
(2008).					
	
Generalized	linear	models	(GLMs;	McCullagh	and	Nelder	1989)	are	commonly	applied	to	
survey	for	the	purpose	of	standardizing	catch	and	effort	data	(Maunder	and	Punt	2004),	
and	are	therefore	the	focal	methodology	of	this	study.		GLMs	are	defined	by	the	statistical	
distribution	of	the	response	variable,	which	in	this	case	is	CPUE,	and	how	a	linear	
combination	of	explanatory	variables	relates	to	the	mean	of	the	response	variable.		
Formally,	GLMs	are	defined	as:		
	
																																																																						 																																																							eq	 3 	
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where	g	is	the	differentiable	monotonic	link	function	that	brings	together	the	response	
variable	(random	model	component)	and	explanatory	variables	(systematic	model	
component),	i	=	E(Yi)	which	is	the	expected	value	or	mean	of	the	response	variable,xi	is	
the	vector	of	covariates	for	the	ith	value	of	the	response	variable,is	a	vector	of	parameters	
to	be	estimated,	and	Yi	is	the	ith	value	of	the	response	variable	(Maunder	and	Punt	2004).		
	
Inspection	of	the	raw	FMWT	CPUE	data	from	1967‐2011	for	delta	smelt,	longfin	smelt,		
Sacramento	splittail,	starry	
flounder,	threadfin	shad,	
and	Crangon	spp.	(shrimp)	
revealed	that	in	many	years	
the	proportion	of	tows	
where	at	least	one	target	
specimen	was	captured	was	
quite	low	(denoted	positive	
tows,	Figure	2).		For	all	
species	examined,	there	has	
been	a	general	decline	in	the	
proportion	of	positive	tows,	
particularly	since	the	late	
1990s	and	to	values	often	
below	0.10.		Given	
approximately	100	tows	per	
monthly	cruise,	this	
suggests	that	target	species	
are	encountered	only	10%	
of	the	time.		If	not	dealt	with	
properly,	the	presence	of	
many	zero	catches	in	the	
data	set	can	invalidate	the	
underlying	assumptions	of	
GLMs	and	thus	jeopardize	
statistical	inference.		
Although	a	variety	of	
accepted	statistical	
techniques	can	be	used	to	deal	with	zero	catches,	I	decided	to	formulate	a	delta‐GLM	where	
the	probability	of	obtaining	a	zero	catch	and	the	catch	rate	based	on	tows	that	encountered	
at	least	one	target	specimen	are	modeled	separately	(Aitchison	1955,	Lo	et	al,	1992,	
Stefansson	1996,	Dick	2004).		The general form of a delta-GLM model is: 
 

 

																																	Pr 1 															 0
otherwise

																																													eq	 4  

	
where	p	is	a	generic	parameter	that	represents	the	probability	of	obtaining	a	zero	catch	and	
f(y)	is	probability	distribution	for	tows	where	the	target	species	was	encountered.		The	

Figure	2.	Annual	proportion	of	FMWT	survey	tows	conducted	in	September‐
December	where	at	least	one	target	specimen	(Delta	Smelt,	Longfin	Smelt,	
Splittail,	Starry	Flounder,	Threadfin	Shad,	and	Crangon	Spp)	was	
encountered	(blue	line)	and	mean	value	(red	line)	from	1967‐2011.		No	
sampling	occurred	in	1974,	September	1976,	December	1976,	and	1979.
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parameter	p	was	modeled	with	the	binomial	distribution	since	this	component	of	the	
model	handles	the	presence/absence	of	the	target	species	in	the	FMWT	trawl	tows.		Visual	
examination	of	raw	CPUE	data	from	tows	where	the	target	species	was	encountered	(i.e.,	
actually	caught)	along	with	diagnostics	plots	of	model	fits	assuming	various	probability	
distributions	for	f(y)	suggested	that	a	lognormal	distribution	was	reasonable	for	modeling	
mean	CPUE	from	the	positive	catches	(i.e.,	number	of	fish	caught	per	tow).	
	

1. Analysis	of	‘Daily’	Covariates	
	

Given	a	finalized	specification	for	the	delta‐GLM,	a	two	pronged	approach	was	taken	to	
investigating	the	role	of	covariates	on	the	FMWT	survey	data.		First,	a	total	of	four	delta‐
lognormal	GLM	parameterizations	involving	various	combinations	of	covariates	associated	
with	the	daily	FMWT	sampling	activities	were	fitted	to	the	CPUE	data.		The	purpose	of	this	
analysis	was	to	identify	the	‘best’	fitting	model	containing	covariates	synoptic	with	
sampling.		From	this	model,	the	statistical	significance	of	those	covariates	was	documented	
and	an	index	of	abundance	was	derived	for	each	species	considered.	
	
The	covariates	considered	in	the	analysis	are	defined	as	follows:	Year,	which	was	a	
categorical	variable	denoting	the	year	of	sampling,	Month,	which	was	a	categorical	variable	
denoting	the	month	of	sampling,	Region,	which	was	defined	to	be	area	of	the	Delta	
following	the	Area	designations	of	the	FMWT	stratification	scheme,	and	Secchi	Depth,	which	
is	the depth at which a symetrical black and white pattern on a small disk attached to a line is no 
longer visible.  Secchi Depth is a measure of transparency of the water and is related to water 
turbidity.		
	
From	those	covariates,	a	total	of	four	model	parameterizations	were	fitted	to	the	data	for	
each	species:	model	D1	contained	covariates	Year	and	Month;	model	D2	contained	Year,	
Month,	and	Region;	model	D3	contained	Year,	Month,	and	Secchi	Depth,	which	was	
standardized	to	have	a	mean	of	zero	and	a	standard	deviation	of	one;	and	model	D4	
contained	Year,	Month,	Region	and	Secchi	Depth	(D	labels	denote	‘daily’	analysis).			
	
The	variables	Temperature	and	Salinity	are	absent	from	all	models	considered.		Various	
plots	of	raw	data	revealed	a	somewhat	expected	appreciable	degree	of	inverse	correlation	
among	Salinity	and	Region	(i.e.,	Salinity	goes	down	as	one	moves	up	the	estuary)	and	among	
Temperature	and	Month	(i.e.,	as	autumn	progresses	toward	winter,	e.g.,	Month	goes	from	9	
to	12,	Temperature	of	surface	waters	goes	down).		Correlation	among	covariates	amounts	
to	collinearity	and	this	phenomenon	should	avoided	when	fitting	GLMs	as	it	can	cause	
numerical	instability	and	biased	parameter	estimates	(Fox	2008).		Hence,	a	single	covariate	
was	chosen	from	each	pair	(Salinity	vs	Region	and	Temperature	vs	Month)	and	it	was	
decided	to	include	Region	and	Month	since	these	variables	are	by	definition	more	general	
than	Salinity	and	Temperature.		Lastly,	interaction	terms	were	also	not	explicitly	considered	
in	the	delta‐GLMs	largely	because	for	several	species	(notably	starry	flounder),	there	are	
many	combinations	of	Month	and	Region	where	all	tows	resulted	in	zero	catches.		Inclusion	
of	covariates	with	many	‘null’	levels	would	compromise	interpretation	of	results.	
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2.	 Analysis	of	‘Annual’	Covariates	
	
In	the	analysis	described	above,	each	model	contained	a	Year	factor,	which	is	simply	a	
proxy	for	the	annual	status	of	the	Delta	ecosystem	(synthesis	of	environmental,	
climatological,	physical,	etc.	effects	and	the	resultant	relative	fish	abundance	as	measured	
by	the	FMWT	survey).		Statistical	significance	of	the	Year	factor	implies	that	CPUE	changes	
appreciably	over	an	annual	time	scale	for	at	least	some	of	the	years	in	the	analysis,	but	it	
does	not	provide	direct	identification	of	the	annual	process(es)	responsible	for	those	
changes.		Therefore,	a	second	step	in	the	analysis	was	initiated	where	the	Year	factor	
within	the	‘best’	fitting	model	was	replaced	with	specific	flow	covariates	tabulated	on	
annual	time	scales.		Those	‘annual’	flow	covariates	were	Historical	and	Unimpaired	Outflow	
and	Historical	and	Unimpaired	Inflow.3		All	inflow	covariates	were	defined	to	include	flow	
from	the	Sacramento	River	plus	Yolo	Bypass.		For	each	of	these	variables,	a	single	‘annual’	
flow	value	was	calculated	by	averaging	monthly	flow	values	four	different	ways:	(i)	from	
Jan‐Jun	within	the	year	of	sampling,	(ii)	from	Mar‐May	within	the	year	of	sampling,	(iii)		
from	Jan‐Jun	of	the	preceding	sampling	year,	and	(iv)	from	Mar‐May	of	the	preceding	
sampling	year	(denoted	as	models	A1‐A16	to	symbolize	‘annual’	analysis).		Mechanically,	for	
each	of	the	16	models,	a	single	flow	value	was	replicated	for	each	tow	within	each	year	of	
the	FMWT	data	set.		To	illustrate	this	point,	suppose	the	monthly	average	Historical	Outflow	
from	January	to	June	in	1967	is	given	by	F1967.		Then	the	Historical	Outflow,	Jan‐Jun	
covariate	for	1967	would	take	on	the	F1967	value	replicated	according	to	the	number	tows	
made	during	that	year.		This	concept	was	carried	forward	for	all	years	in	the	time‐series	
such	that	the	43	unique	flow	averages	(1967‐2010)	of	the	16	different	flow	variables	were	
each	replicated	based	on	the	year‐specific	number	of	tows	made	by	the	FMWT	survey.	
	
Lagged	flow	variables	were	considered	because	several	of	the	target	fish	species	do	not	
reach	sexual	maturity	until	at	least	two	years	of	age,	so	it	is	reasonable	to	hypothesize	that	
there	could	be	delayed	effects	of	flow	on	the	relative	abundance	of	species	sampled	by	the	
FMWT	survey.			All	‘annual’	flow	values	were	based	on	calculations	derived	from	water	
monitoring	observations	(Walter	Bourez,	MBK	Engineers,	personal	communication).		
Lastly,	the	‘annual’	flow	values	and	the	aforementioned	daily	Secchi	Depth	measurements	
were	standardized	to	have	a	mean	of	zero	and	a	standard	deviation	of	one	to	improve	the	
numerics	underlying	the	model	fitting	process	and	to	facilitate	comparisons	of	the	relative	
effects	of	these	variables	on	the	probability	of	capture	(referred	to	as	binomial	model)4	and	
mean	CPUE	based	on	positive	catches	(referred	to	as	lognormal	model).	
		
Postulation	of	multiple	models	implies	that	some	type	of	model	selection	criterion	was	
needed	to	objectively	discriminate	among	competing	parameterizations.		Akaike’s	
Information	Criterion	(AIC;	Akaike	1973,	Burnham	and	Anderson	2002)	was	used	to	
compare	among	the	models	in	both	the	‘daily	and	‘annual’	analyses.		AIC	is	a	commonly	
used	model	selection	statistic	that	is	designed	to	achieve	the	most	parsimonious	

                                                 
3The	base	flow	data	that	I	used	were	provided	by	Walter	Bourez	of	MBK	Engineers	and	are	based	on	
DAYFLOW	and	the	Department	of	Water	Resources	publication	California	Central	Valley	Unimpaired	Flow	
Data. 
4 “Probability	of	capture”	also	is	referenced	as	“presence/absence.” 
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description	of	the	underlying	data.		Models	with	lots	of	parameters	by	definition	are	
expected	to	provide	better	fits	to	data,	however,	the	inclusion	of	many	parameters	leads	to	
estimated	coefficients	(the	’s	from	eq	(3))	with	lower	precision	than	simpler	models,	
which	affects	the	quality	of	inferences	about	the	significance	of	the	covariates	being	
considered.		So	there	is	a	natural	tradeoff	between	model	complexity	and	precision	of	
estimated	parameters,	and	AIC	can	help	with	identifying	the	appropriate	balance.		
Formally,	AIC	is	defined	as:				 
  	
																																																																	AIC 2 log 2 																																																									eq	 5 	
	
where	 	is	the	estimated	maximum	likelihood	value	and	k	is	the	number	of	estimated	
parameters.		The	first	term	of	the	AIC	equation	pertains	to	model	fit	and	it	will	tend	toward	
smaller	values	for	better	fitting	models.		The	second	term	is	an	added	adjustment	that	is	a	
function	of	the	number	of	model	parameters	and	designed	to	balance	the	improved	fit	of	
models	with	many	parameters.		Therefore	the	most	parsimonious	description	of	the	data	is	
the	model	with	the	lowest	total	AIC	value.		The	absolute	magnitude	of	an	AIC	value	is	not	
overly	useful	given	that	is	intended	as	a	relative	measure	of	model	parsimony	among	the	
parameterizations	considered	in	the	analysis.		Accordingly,	it	is	helpful	to	examine	AIC	for	
each	fitted	model,	which	is	the	difference	between	the	AIC	value	for	a	particular	model	and	
the	smallest	AIC	value	of	all	models	considered:			
	
																																																																							∆AIC AIC AIC .																																																			eq	 6 	
	
Naturally,	it	follows	then	that	the	‘best’	fitting	model	within	a	candidate	set	is	the	one	with	
AIC	=	0,	however,	it	should	be	noted	that	models	with	0<	AIC	<	2	can	also	be	viewed	as	
having	received	notable	empirical	support	(Burnham	and	Anderson	2002).	
	
This	report’s	derivation	of	indices	of	abundance	from	1967‐2010	alternative	to	those	
provided	by	DFG	was	based	on	the	‘best’	fitting	model	from	the	four	considered	in	the	
‘daily’	analysis.		The	unbiased	estimated	index	of	abundance	in	year	y	(Iy)	was	calculated	as:	
			
																																																																																		 ̂ ̂ 																																																															eq	 7 	
	

where	 ̂
∑ ,

∑ ,
	is	the	probability	of	a	non‐zero	catch	(modeled	via	

logistic	regression)	and	the	mean	CPUE	based	on	positive	catches	is	 ̂ exp

∑ , ,	such	that	 	and	 	are	the	estimated	intercepts,	 	and	 	are	the	

estimated	coefficients	for	year	y,	 	and	 	the	estimated	coefficients	for	xi,y	which	is	the	ith	
covariate	in	year	y	(total	of	q	covariates	beyond	the	intercepts	and	year	factors),	and	 	is	
the	estimate	of	the	dispersion	parameter	and	necessary	for	bias‐correction	of	the	back	
transformed	lognormal	component	of	the	delta‐GLM.			
	
In	general	terms,	the	indices	of	relative	abundance	in	this	report	were	calculated	by	
multiplying	an	estimate	of	the	probability	that	the	FMWT	survey	encounters	a	given	
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species	by	an	estiamte	of	the	average	CPUE	from	tows	when	that	species	is	actually	
captured	by	FMWT.		This	approach	is	one	of	a	few	standard	options	for	deriving	indices	of	
relative	abundance	from	survey	information	when	there	are	a	large	number	of	zero	catches	
in	the	data	set	(again,	see	Figure	2	and	associated	discussion).		
	
When	extracting	the	annual	predicted	index	values	from	any	GLM,	it	is	necessary	to	
account	for	the	multiple	levels	(in	the	case	of	categorical	covariates)	and	values	(with	
continuous	variables)	during	year	y	by	specifying	single	values	for	 , 	(so	called	marginal	
means,	Searle	et	al.	1980).		In	the	case	of	continuous	variables,	the	contribution	to	the	
annual	predicted	indices	was	given	by	the	product	of	the	estimated	coefficients	and	the	
mean	values	of	the	observations	of	 , .		For	categorical	variables,	the	contribution	was	
taken	to	be	the	mean	value	of	the	estimated	coefficients	for	all	levels.		Lastly,	to	stabilize	the	
jackknife	routine	(see	next	paragraph)	used	to	derive	standard	errors,	a	data	filter	was	
imposed	where	levels	of	the	categorical	variables	were	removed	if	there	was	less	than	two	
trawls	tows	where	the	target	species/group	was	captured.				
	
Standard	errors	of	the	annual	indices	(	 )	were	derived	from	a	jackknife	routine	(Efron 
1981),	which	is	a	nonparametric	procedure	that	consists	of	fitting	the	delta‐lognormal	GLM	
to	repeated	subsamples	of	the	original	data	set	by	omitting	a	single	observation	at	a	time.		If	
the	original	underlying	data	set	consists	of	n	observations,	then	each	subsample	is	
comprised	of	n‐1	observations,	and	fitting	the	delta‐lognormal	model	to	each	subsample	
leads	to	n	estimated	indices	for	each	year	in	the	time‐series.		The	jackknife	estimate	of	the	
standard	error	for	each	annual	index	is	then	calculated	from	the	n	estimated	indices	
obtained	from	the	model	fits	to	the	data	subsamples.		The	formal	expression	for	the	
estimated	standard	error	of	each	index	value	is	as	follows:	
		

																																																											
1

																																																		eq	 8 	

	
where		 		are	the	estimated	indices	from	the	subsamples,	 		is	the	index	value	for	year	y	
derived	from	fitting	the	delta‐lognormal	GLM	to	the	full	data	set,	and	n	is	the	total	number	
of	observations.		The	coefficients	of	variation	(CV)	is	the	ratio	of	the	standard	error	to	the	
mean:	

																																																																																		CV 																																																																eq	 9 	

	
which	is	the	inverse	of	the	signal	to	noise	ratio	and	helpful	in	demonstrating	the	extent	of	
variability	in	relation	to	the	estimated	CPUE	index	value	for	each	year.	
	
IV.	 Results		

	
Over	the	course	of	Sept‐Dec	during	the	years	1967‐2010,	a	total	of	14,658	tows	were	
conducted	by	the	FMWT	survey.		The	data	from	these	tows	generally	formed	the	basis	for	
examining	the	significance	of	covariates	and	for	developing	indices	of	abundance	for	
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selected	species	alternative	to	the	abundance	indices	provided	by	DFG.		However,	as	noted	
above,	a	data	filter	was	applied	to	ensure	that	there	were	at	least	two	trawl	tows	with	
positive	catches	within	each	level	of	each	covariate	for	each	year	in	the	analysis.		This	
additional	but	necessary	restriction	implied	that	the	actual	number	of	tows	underlying	
derivation	of	the	indices	was	less	than	14,658	tows	for	some	species	(data	losses	most	
often	resulted	from	removal	of	specific	areas	within	the	Region	covariate,	but	some	years	
were	also	removed;	maximum	number	of	tows	ignored	was	4,861	for	Sacramento	splittail	
followed	by	2,988	for	starry	flounder).		Also,	uncharacteristically	high	Secchi	Depth	values	
were	noted	for	607	tows	(measurements	considerably	larger	than	for	the	other	~14,000),	
so	those	were	also	eliminated	to	mitigate	against	the	effects	of	outliers	on	the	modeling	
results.				
	

A. ‘Daily’	Analysis	
	
Of	the	four	delta‐lognormal	GLM	parameterizations	fitted	to	the	FMWT	survey	CPUE	data	
for	analysis	of	‘Daily’	covariates,	AIC‐based	model	selection	for	both	the	binomial	and	
lognormal	models	suggested	that	models	containing	Year,	Month,	Region,	and	Secchi	
provided	the	acceptable	explanations	of	the	observed	data.		Supporting	this	conclusion	is	
the	fact	that	AIC=0.0	for	model	D4,	for	all	species	except	starry	flounder	(Appendix	A,	
Tables	A1A‐A6A;	for	starry	flounder,	AIC	=	0.0	for	model	D2	and	AIC	=	0.21	for	model	
D4).		However,	a	AIC=0.21	is	virtually	indistinguishable	from	AIC	=	0.0,	so	model	D4	was	
applied	for	all	species	to	maintain	modeling	consistency.			
	
These	results	suggest	that,	beyond	the	expected	Year	effect,	some	degree	of	appreciable	
variation	in	FMWT	survey	CPUE	data	was	also	explained	by	Month	of	sampling,	Region	of	
sampling,	and	Secchi	Depth.		However,	simply	because	a	suite	of	covariates	is	found	to	
improve	model	fit,	the	overall	amount	of	additional	variation	explained	by	inclusion	of	
those	covariates	relative	to	the	model	with	no	covariates	must	be	examined.		For	the	
binomial	model,	the	percent	of	the	total	variation	in	the	data	explained	by	the	covariates	
ranged	from	18‐37%,	while	for	the	lognormal	model,	the	range	was	19‐44%.		The	
maximum	percentages	both	were	for	the	longfin	smelt	CPUE	analysis	and	the	minimum	
percentages	for	the	binomial	and	lognormal	models	were	for	starry	flounder	and	delta	
smelt,	respectively.		For	all	species,	the	‘best’	fitting	model	explained	less	than	half	of	the	
total	variation	in	the	observed	data,	which	strongly	suggests	that	there	are	other	key	
covariates	that	play	a	role	in	structuring	the	FMWT	survey	CPUE	information.				
	
After	identifying	which	model	provided	the	‘best’	fit	for	each	species,	the	next	step	involved	
examining	the	estimated	coefficients	(relative	magnitude	and	sign,	i.e.,	positive/negative),	
associated	standard	errors,	and	p‐values	which	underpin	the	statistical	significance	of	each	
covariate	level	(in	the	case	of	categorical	variables)	and	covariate	itself	(in	the	case	of	
continuous	variables).		The	intercept	of	each	model,	denoted	by	0,	sets	the	reference	point	
for	interpretation	of	the	categorical	covariates.			
	
For	all	models	except	those	fitted	to	the	Crangon	spp.	data,	the	binomial	and	lognormal	
intercepts	were	set	to	be	September,	1967,	in	Region	1.		For	Crangon	spp.,	no	data	were	
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collected	in	1967	so	the	reference	year	was	set	to	1968.		Given	these	reference	points,	the	
coefficients	of	all	other	levels	of	Month	should	be	viewed	directional	deviations	from	
September,	the	coefficients	of	all	other	levels	of	Year	should	be	viewed	directional	
deviations	from	1967	(or	1968	for	Crangon	spp.),	and	the	coefficients	of	all	other	levels	of	
Region	should	be	viewed	directional	deviations	from	Region	1.			
	
The	p‐values	provide	information	regarding	the	statistical	significance	of	each	of	those	
directional	deviations	when	tested	against	zero.		The	cutoff	p‐value	for	inferring	
significance	is	usually	taken	to	be	0.05,	so	any	Month,	Year,	and	Region	level	coefficient	
with	a	p‐value	less	than	implies	that	there	is	a	either	a	significant	increase	(positive	
value)	or	decrease	(negative	value)	from	the	reference	point	associated	with	the	binomial	
or	lognormal	models.		Conversely,	p‐values	greater	than	suggest	that	coefficients	
associated	with	levels	of	Month,	Year,	and	Region	are	not	statistically	different	from	zero,	
and	thus	are	not	statistically	different	from	the	reference	point.		For	a	continuous	covariate,	
such	as	Secchi	Depth,	interpretation	of	the	modeling	results	is	a	bit	simpler.		By	definition	
there	are	no	levels	associated	with	a	continuous	variable,	and	as	such,	a	single	coefficient	is	
estimated	and	the	related	p‐value	provides	guidance	for	statistical	significance	of	that	
coefficient	when	tested	against	zero.		If	the	estimated	coefficient	is	negative,	with	a	p‐value	
less		then	the	effect	of	Secchi	Depth	on	either	the	binomial	and	lognormal	models	will	be	
higher	for	lower	Secchi	measurements	and	lower	for	higher	Secchi	measurements.		This	
follows	because	Secchi	Depth	was	standardized	to	have	a	mean	of	zero	such	that	low	Secchi	
observations	were	negative,	which	when	multiplied	by	the	negative	estimated	coefficient	
leads	to	a	positive	effect.		
Similarly,	high	Secchi	Depth	
observations	were	positive,	which	
when	multiplied	by	the	negative	
estimated	coefficient	leads	to	a	
negative	effect.		
	
Admittedly,	there	are	a	lot	of	
estimated	coefficients	for	each	
species,	so	it	is	a	bit	cumbersome	
to	interpret	the	estimation	results	
and,	perhaps	more	importantly,	
to	draw	general	conclusions	
regarding	the	effects	of	the	
modeled	covariates	from	the	
binomial	and	lognormal	models.		
Some	general	guidance	is	
provided	below.	
	
The	statistical	significance	of	many	of	the	Year	levels	is	not	surprising	as	it	reasonable	to	
conclude	based	on	known	changes	to	the	Delta	ecosystem	that	the	presence/absence	and	
relative	abundance	of	species	has	changed	notably	during	1967‐2010.		The	estimated	Year	
effects	allow	for	detection	of	regimes	of	significantly	higher	or	lower	than	reference	year	

Figure	3.	Mean	annual	turbidity,	declining	throughout	the	
Sacramento‐San	Joaquin	Delta	from	1975–2008.		From	
monthly	data	provided	by	California	Department	of	Water	
Resources,	Environmental	Monitoring	Program,	and	published	
by	Cloern	et	al.	(2011). 
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presence/absence	(Appendix	A,	Tables	A1B‐A6B)	and	relative	abundance	(Appendix	A,	
Tables	A1C‐A6C).	Accordingly,	the	Year	levels	drive	the	patterns	associated	with	model	
predicted	indices	of	relative	abundance	over	the	time‐series.		The	levels	of	Year	are	simply	
proxies	for	the	annual	state	of	the	Delta	ecosystem,	so	identifying	a	specific	variable	or	set	
of	variables	responsible	for	the	predicted	annual	trends	in	species	relative	abundance	
beyond	a	‘generic’	Year	effect	requires	additional	investigation	(see	a	first	attempt	in	the	
‘annual’	analysis	section	below).			
	
Statistical	significance	or	lack	thereof	for	the	levels	of	Month	provides	some	insight	into	the	
degree	of	seasonal	patterns	in	presence/absence	and	relative	abundance,	but	as	with	the	
Year	covariate,	levels	of	Month	are	also	proxies	for	time‐periods,	albeit	more	refined	than	
annual.		Significance	of	Month	effects	do	not	provide	direct	evidence	of	any	causative	
seasonal	mechanism	or	variable,	although	a	plausible	hypothesis	might	be	within	year	
movements	where	species	undergo	localized	migrations	in	response	to	the	seasonal	
physical	and	environmental	dynamics	present	within	the	Delta.			
	
The	levels	of	the	Region	covariate	are	proxies	for	location	within	the	Delta,	and	arguably	
habitat	type,	so	it	is	not	overly	surprising	that	many	of	these	estimated	coefficients	were	
significant	given	that	most	fishes	have	preferred	habitat	types	and	specific	home	ranges.		
But	again,	the	levels	of	Region	are	proxies	for	other	more	causative	mechanisms	
responsible	for	structuring	the	distribution	of	species.		A	deeper	investigation	of	the	
importance	of	Region	might	involve	incorporating	specifically	defined	habitats	such	as	
submerged	aquatic	vegetation	(SAV),	sandy,	or	muddy	bottom	assuming	such	habitat	
characterizations	have	been	made	for	the	locations	sampled	by	the	FMWT	survey.			
	
The	statistical	significance	of	Secchi	Depth	for	all	binomial	models	and	all	but	one	
lognormal	model	(starry	flounder)	brings	to	the	forefront	the	idea	that	water	turbidity	
influences	the	presence/absence	and	relative	abundance	of	species	within	the	Delta.		By	
definition,	Secchi	Depth	is	a	coarse	measurement	of	turbidity,	so	future	investigations	
should	evaluate	the	impacts	of	more	robust	metrics	of	turbitity	on	FMWT	survey	CPUE.		All	
estimated	coefficients	of	the	Secchi	Depth	covariate	were	negative	regardless	of	model	type	
or	species,	and	because	this	variable	was	standardized,	low	Secchi	Depth	values	correspond	
to	increases	in	presence/absence	and	relative	abundance,	and	high	Secchi	Depth	values	
imply	corresponding	decreases	in	those	metrics.		Since	the	general	patterns	of	relative	
abundance	for	various	species	derived	from	the	FMWT	survey	data	show	declines	over	the	
time‐series	(DFG’s	published	indices	and	those	presented	below),	consistency	of	this	Secchi	
Depth	interpretation	with	the	evolving	understanding	of	how	the	Delta	has	changed	over	
recent	decades	could	only	be	maintained	if	turbidity	in	the	Delta	has	decreased	over	time.		
Such	a	finding	has	recently	been	published	in	the	primary	literature	(Figure	3).		
Hypothesized	mechanisms	for	increased	presence/absence	and	relative	abundance	with	
higher	Delta	turbidity	include:	(i)	decreased	gear	avoidance	due	to	compromised	sensory	
based	detection	of	the	FMWT	net	by	species	(a	sampling	based	explanation	which	amounts	
to	a	temporal	change	in	catchability),	(ii)	populations	thrive	under	turbid	conditions	
perhaps	because	more	planktonic	prey	are	present	(true	higher	species	relative	
abundances	from	a	bottom‐up	perspective),	and	(iii)	decreased	predation	mortality	
possibly	because	higher	turbidity	reduces	the	success	of	predators	(true	higher	species	
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relative	abundances	from	a	top‐down	perspective).		Clearly,	each	of	these	hypotheses	
warrants	further	investigation.	
	

B. Derivation	of	Alternative	Indices	
	
The	final	step	in	the	‘Daily’	Analysis	was	to	derive	indices	of	abundance	for	species	
alternative	to	those	published	by	DFG	and	with	associated	estimates	of	precision	from	the	
‘best’	fitting	model.		In	general,	the	patterns	of	the	indices	from	this	analysis	do	not	differ	
qualitatively	from	those	offered	by	DFG	(Figures	4A,B).		Prior	to	the	mid‐1980s,	the	indices	
show	mostly	variable	patterns	in	relative	abundance	for	the	target	species,	and	near	the	
late	1990s,	the	indices	generally	decline	up	to	2010.		In	terms	of	precision,	the	estimated	
CVs	for	all	species	were	generally	acceptable,	with	most	values	ranging	between	0.2‐0.45.		
There	are	exceptions	though	with	higher	values	corresponding	to	periods	within	the	time‐
series	for	Sacramento	
splittail,	starry	
flounder,	and	Crangon	
spp.				
	
As	mentioned	
previously,	the	units	of	
DFG’s	indices	are	
water	volume	times	
average	fish	counts	
summed	over	all	areas	
sampled.		This	
calculation	method	is	
not	overly	intuitive,	
which	renders	it	
difficult	to	interpret	
the	actual	catch	rate	
values	and	the	scale	of	
changes	in	relative	
abundance.		For	
example,	the	DFG	
index	of	relative	
abundance	for	longfin	
smelt	went	from	
11864	volume*fish	in	
1983	to	7408	
volume*fish	in	1984.		
Clearly,	the	relative	
abundance	went	down	
over	the	two‐year	
period,	but	what	does	
a	reduction	of	4456	
volume*fish	units	

Figure	4A.	Estimated	indices	of	relative	abundance	(mean	number/tow,	blue	
line)	and	associated	coefficients	of	variation	(CV,	gray	line)	for	delta	smelt,	
longfin	smelt,	Sacramento	splittail,	starry	flounder,	threadfin	shad,	and	crangon	
spp.	based	on	a	delta‐lognormal	GLM	applied	the	FMWT	survey	data	from	1967‐
2010.		The	red	lines	are	the	average	index	value	across	the	time‐series.	No	
sampling	occurred	in	1974,	September	1976,	December	1976,	and	1979.		Other	
years	with	missing	index	values	are	due	to	insufficient	catches	to	warrant	
estimation	of	a	relative	abundance	measure. 
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really	mean	for	the	population	status	of	longfin	smelt?		It	is	hard	to	say	because	the	
numerical	values	do	not	relate	to	any	relative	or	total	population	level	parameter.		In	
contrast	to	the	methods	used	by	DFG,	the	estimation	approach	taken	in	this	study	was	
designed	to	yield	indices	as	unbiased	estimates	of	average‐catch‐per‐tow.		From	1983‐
1984,	the	longfin	smelt	indices	went	from	an	average	of	3.54	fish‐per‐tow	to	an	average	of	
6.76	fish‐per‐tow.		Not	only	do	
the	methods	used	in	this	study	
provide	a	different	pattern	of	
relative	abundance	for	longfin	
smelt	over	the	two‐year	period	
(increasing	instead	of	
decreasing),	the	magnitude	of	
the	change	is	interpretable.		The	
FMWT	survey	captured,	on	
average,	approximately	twice	as	
many	longfin	smelt	per‐tow	in	
1984	as	it	did	in	1983.								
	
From	this	study,	the	highest	
index	for	delta	smelt	from	1967‐
2010	was	0.79	fish‐per‐tow	
(1970),	and	the	full	time‐series	
mean	relative	abundance	was	
0.17	fish‐per‐tow	(Figure	4A).		
For	Sacramento	splittail	and	
starry	flounder,	the	highest	
relative	abundance	values	were	
0.13	and	0.14	fish‐per‐tow	and	the	time‐series	averages	were	0.02	and	0.04	fish‐per‐tow,	
respectively.		Collectively,	never	achieving	an	annual	mean	catch‐per‐tow	greater	than	say	
1.0	fish‐per‐tow	implies	that	not	many	animals	are	routinely	captured	by	the	FMWT	
survey,	which	raises	legitimate	questions	about	the	efficacy	of	the	program	in	providing	
measures	of	relative	abundance	that	track	patterns	in	true	abundance.			
	
For	comparison,	the	Virginia	Institute	of	Marine	Science	(VIMS)	Juvenile	Finfish	Trawl	
Survey	is	a	fisheries‐independent	sampling	program	that	has	operated	in	Chesapeake	Bay	
continuously	since	the	1950s.		As	indicated	by	its	name,	the	survey	is	designed	to	provide	
indices	of	abundance	for	juvenile	fishes.		Although	there	are	differences	between	the	VIMS	
and	FMWT	surveys	(e.g.,	differences	in	overall	net	size,	mesh	sizes,	deployment	procedures,	
etc.)	the	indices	for	two	sciaenid	species	(spot	and	weakfish),	the	VIMS	program	is	believed	
to	provide	reliable	measures	of	juvenile	abundance	are	included	here	(Figure	5).		Note	that	
the	long	term	average	catch‐per‐tow	for	spot	and	weakfish	is	slightly	less	than	20	and	10	
fish,	respectively.		These	catches‐per‐tow	are	orders	of	magnitudes	higher	than	the	FMWT’s	
catches‐per‐tow	for	delta	smelt,	Sacramento	splittail	and	starry	flounder.	
			
For	longfin	smelt,	threadfin	shad,	and	Crangon	spp.,	the	highest	FMWT	index	values	were	
45.7,	4.9,	and	45.1	individuals‐per‐tow	and	the	long‐term	averages	were	5.1,	1.3,	and	8.8,	

Figure	4B.	Estimated	indices	of	relative	abundance	for	delta	
smelt,	longfin	smelt,	Sacramento	splittail,	and	threadfin	shad	
published	by	DFG,	1967‐2010.	 
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respectively.		In	general,	the	scale	of	these	indices	are	more	reasonable	and	suggestive	that	
the	FMWT	more	routinely	encounters	these	species	and	that	catches	are	occasionally	high.		
The	‘spiked’	nature	of	the	longfin	smelt	indices	in	the	early	1960s	and	1980s	does	give	
pause,	but	inspection	of	the	raw	data	for	those	years	showed	frequent	catches	of	several	
hundred	fish‐per‐tow	in	specific	years.		This	suggests	that	the	high	index	values	for	those	
years	were	not	functions	of	a	small	number	of	very	large	catches	resulting	from	unusually	
high	localized	relative	abundance	at	a	few	stations,	which	would	otherwise	be	cause	for	
concern.			
	
By	definition,	trawl	surveys	are	
multispecies	sampling	platforms,	
and	as	such,	some	species	will	be	
sampled	well	while	others	will	
not	be	sampled	well.		These	
differences	in	sampling	
effectiveness	are	because	the	life	
history	and	habitat	utilization	of	
some	species	are	more	closely	
aligned	with	the	gear	
configuration	and	deployment	
methods	than	for	other	species.		A	
somewhat	obvious	example	of	
mismatch	for	the	FMWT	survey	is	
starry	flounder.		Should	the	use	of	
a	midwater	trawl	(even	with	an	
oblique	tow	such	that	there	is	
some	attempt	for	bottom	contact)	
be	expected	to	reliably	sample	a	
largely	bottom	dwelling	species?		
Probably	not,	and	the	consistently	
low	mean	CPUE	of	this	species	
provided	by	the	FMWT	likely	
confirms	this	idea.		In	the	case	of	a	
more	pelagic	oriented	species	
such	as	delta	smelt,	there	may	be	
more	conceptual	consistency	
between	survey	design	and	target	
species	life	history.		Yet,	mean	
CPUE	has	still	remained	quite	low	
over	the	time‐series,	which	
warrants	asking	more	refined	
questions.		As	noted	previously,	a	
key	limitation	of	the	FMWT	survey	is	the	use	of	a	fixed	station	sampling	design	such	that	
roughly	the	same	locations	are	sampled	each	month.		It	follows	then	that	if	delta	smelt	(or	
any	other	species	for	that	matter)	have	exhibited	any	type	of	directed	habitat	shift	over	
time,	which	could	be	expected	given	the	physical	and	environmental	changes	experienced	

Figure	5.	Indices	of	abundance	of	juvenile	spot	and	weakfish	in	
lower	Chesapeake	Bay	from	1988‐2010	derived	from	the	VIMS	
Juvenile	Finfish	Trawl	Survey.		The	black	dotted	line	represents	
the	long‐term	average	catch‐per‐tow. 
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Figure	6.	Partial	residuals	plots	showing	fits	of	the	estimated	coefficients	(blue	lines)	associated	with	the	
‘best’	flow	variable	and	Secchi	Depth	for	delta	smelt,	longfin	smelt,	Sacramento	splittail,	starry	flounder,	
threadfin	shad,	and	Crangon	spp.	from	the	lognormal	models	fitted	to	the	FMWT	survey	CPUE	data	
(positive	tows),	1967‐2010.		In	the	upper	right	portion	of	each	plot	is	the	estimated	coefficient	for	each	
covariate	(the		values),	which	represent	the	magnitude	and	direction	of	the	statistical	relationship.		An	
inclining	line	indicates	a	positive	relationship	between	the	covariate	and	the	species’	relative	abundance,	
with	a	more	steeply	inclined	line	representing	a	more	positive	relationship.		A	declining	line	indicates	a	
negative	relationship	between	the	covariate	and	the	species’	relative	abundance,	with	a	more	steeply	
declining	line	representing	a	more	negative	relationship. 

by	the	Delta	over	recent	decades,	then	temporal	patterns	in	the	FMWT	indices	of	relative	
abundance	would	be	confounded	with	changes	in	species	distribution.		Independent	
corroboration	of	species	relative	abundance	patterns	are	needed,	perhaps	through	index	
validation	studies	involving	other	data	sources.		
	

C. ‘Annual’	Analysis	
	

From	the	16	delta‐lognormal	GLM	parameterizations	fitted	to	the	FMWT	survey	CPUE	data	
where	the	Year	covariate	in	model	D4	from	the	‘daily’	analysis	was	replaced	by	an	‘annual’	
flow	metric,	AIC‐based	model	selection	showed	that	the	particular	flow	covariate	that	had	
the	most	empirical	support	varied	by	model	type	and	species.		For	delta	smelt,	longfin	
smelt,	and	Sacramento	splittail,	the	binomial	(presence/absence)	model	with	Unimpaired	
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Inflow,	Jan‐Jun	received	the	most	empirical	support	(AIC	=	0.0),	while	various	forms	of	the	
Historical	Outflow	covariate	corresponded	to	the	‘best’	fitting	lognormal	(average	catch‐
per‐tow)	model	(Appendix	B,	Tables	B1A‐B3A).		Table	B1A	shows	Historical	Inflow,	Mar‐
May,	1yr	Lag	is	the	‘best’	fitting	lognormal	model	(model	A14	has	AIC	=0.0)	for	delta	smelt.		
Historical	Outflow,	Jan‐Jan	was	important	for	the	respective	binomial	models	of	starry	
flounder	and	threadfin	shad	along	with	the	respective	lognormal	models	of	threadfin	shad	
and	Crangon	spp.	(Appendix	B,	Table	B4A‐B6A).		Although	AIC	=	0.0	does	signify	the	‘best’	
fitting	model,	situations	when	AIC	values	differ	by	only	a	few	units	suggest	that	the	
empirical	evidence	supports	multiple	models.		This	is	particularly	the	case	for	the	
lognormal	models	of	Sacramento	splittail,	starry	flounder,	and	threadfin	shad,	which	
collectively	indicate	there	is	not	necessarily	a	dominate	flow	covariate	influencing	the	
CPUE	when	those	species	are	captured	by	the	FMWT.	
	
Regardless	of	model	type	or	species,	coefficients	of	the	flow	covariates	from	the	‘best’	
fitting	models	were	mostly	positive	and	all	statistically	significant	(Appendix	B,	Tables	
B1B‐B6B).		An	exception	is	delta	smelt,	for	which	the	coefficient	of	the	‘best’	fitting	flow	
covariate,	was	statistically	significant	and	negative.		Positive	coefficients	combined	with	the	
standardized	flow	covariates	implies	that	low	flow	values	correspond	to	reductions	in	the	
presence/absence	and	mean	relative	abundance	of	species,	while	high	flow	values	yield	
increases	in	those	metrics.		The	opposite	effect	occurs	in	the	case	of	a	negative	estimated	
coefficient.		For	example,	because	the	coefficient	of	the	‘best’	fitting	flow	covariate	for	delta	
smelt	was	negative,	delta	smelt	relative	abundance	decreased	as	that	flow	covariate	
increased.		Since	the	flow	and	Secchi	Depth	variables	were	all	standardized,	it	is	appropriate	
to	compare	the	estimated	coefficients	as	a	means	of	inferring	the	relative	impact	of	those	
variables	on	CPUE.		
	
A	helpful	way	to	visualize	the	variability	in	the	underlying	data	and	the	relationship	of	the	
covariates	on	observed	CPUE	(the	estimated	coefficients	derived	from	the	GLMs)	is	by	
constructing	partial	residuals	plots.		Such	plots	depict	fits	of	specific	covariates	to	the	data	
while	accounting	for	the	presence	of	all	other	covariates	in	the	model.		For	the	present	
analysis,	examination	of	partial	residuals	plots	for	the	flow	variables	and	Secchi	Depth	from	
the	lognormal	model	(positive	tows)	yielded	several	interesting	results	(Figure	6).	
	

1. Significant	Variation	and	Uncertainty	in	Relationship	of	Abundance	to	Flow.		As	
demonstrated	in	the	results	depicted	in	Figure	6,	there	is	significant	variation	in	
the	underlying	CPUE	data	in	relation	to	flow	and	among	the	relationship	
between	the	relative	abundance	of	relevant	species	and	the	‘best’	fitting	flow	
covariate.5		Figure	6's	graphs	for	delta	smelt	and	longfin	smelt	depict	this	
variation	with	widely‐ranging	catches	occurring	at	vastly	different	levels	of	the	
best‐fitting	flow	covariate	(Historical	Inflow,	March‐May,	with	1yr	Lag	for	delta	
smelt	and	Historical	Outflow,	Jan‐Jun	for	longfin	smelt).		Note	that	the	y‐axes	of	
the	plots	in	Figure	6	are	log(CPUE)	because	of	fitting	a	lognormal	GLM,	so	the	

                                                 
5	As	discussed	above	(see	page	23),	the	‘best’	fitting	model	is	the	one	with	a	AIC	value	of	0.0.			Please	see	
Appendix	B,	Tables	B1(A),	B2(A),	B3(A),	B4(A),	B5(A),	B6(A)	and	B7(A)	for	the	analysis	of	which	variables	fit	
each	species'	CPUE	data	best. 
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variance	in	the	actual	data	concerning	the	relationship	of	CPUE	to	flow	
covariates	is	considerably	greater	than	shown	in	plots.	
			

2. Significant	Variation	in	Which	Flow	Covariates	Provided	the	Best	Fit	to	the	FMWT	
Survey	Data.		The	"(A)"	tables	in	Appendix	B	indicate	that	there	is	a	wide	range	in	
which	flow	covariate	provided	the	‘best’	fit	to	the	binomial	(presence/absence)	
and	lognormal	(mean	CPUE	from	positive	tows)	models	for	the	species	
considered	in	this	study.		The	following	Table	1	summarizes	which	flow	
covariates	were	associated	with	the	‘best’	fitting	binomial	and	lognormal	models.	

	
Table	1.		Summary	of	which	flow	covariates	provided	the	‘best’	fit	of	the	
binomial	and	lognormal	models	fitted	to	the	FMWT	survey	data,	1967‐2010.		

	
Species	 Presence/Absence	

(Binomial	AIC=0)	
Abundance	

(Lognormal	AIC=0)	
Delta	smelt	 Unimpaired	inflow,	

Jan‐Jun	
Historical	Inflow,	Mar‐

May,	1yr	Lag	
Longfin	smelt	 Unimpaired	inflow,	

Jan‐Jun	
Historical	Outflow,	

Jan‐Jun	
Sacramento	
splittail	

Unimpaired	inflow,	
Jan‐Jun	

Historical	Outflow,	
Jan‐Jun,	1yr	Lag	

Starry	flounder	 Historical	outflow,	
Jan‐Jun	

Unimpaired	Outflow,	
Mar‐May	

Threadfin	shad	 Historical	Outflow,	
Jan‐Jun	

Historical	Outflow,	
Jan‐Jun	

Crangon	spp.	 Unimpaired	Outflow,	
Mar‐May	

Historical	Outflow,	
Jan‐Jun	

	
The	lack	of	a	single	dominate	flow	covariate	underscores	the	uncertainty	in	
identifying	which	flow	covariate	might	be	adjusted	to	produce	statistically‐
probable	increases	in	relative	abundance.		In	particular,	the	fact	that	Unimpaired	
Outflow	is	the	‘best’	fitting	covariate	for	presence/absence	for	several	species,	
but	is	the	‘best’	fitting	covariate	for	mean	CPUE	based	on	positive	tows	for	only	
starry	flounder	(which	itself	is	not	the	‘best’	fitting	covariate	for	
presence/absence	for	starry	flounder)	indicates	that	it	is	particularly	uncertain	
whether	managed	flow	covariates	would	generate	statistically‐probable	
increases	in	species	relative	abundance.	
	

3. Species'	Variable	Relationships	to	Best‐Fit	Flow	Covariates.		The	lines	and	
estimated	coefficients	for	each	covariate	(the		values)6	in	the	graphs	in	columns	
1	and	3	of	Figure	6	depict	the	strength	of	the	statistical	relationship	between	the	
‘best’	fitting	flow	covariate	and	CPUE	for	each	species,	based	on	the	the	positive	

                                                 
6 The higher the value is for a covariate, the more that covariate explains changes in the relevant species’ 
abundance, with a positive value indicating a positive relationship and a negative relationship indicating a negative 
relationship. 
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tows	in	the	FMWT	survey	data.		Instances	where	the	slope	of	the	line	is	positive	
indicate	that	the	relationship	is	positive,	with	a	more	steeply	sloped	line	
representing	a	stronger	effect	of	the	flow	covariate	on	CPUE.		In	cases	where	the	
slope	of	the	line	is	negative,	the	relationship	is	inverse.	
	
As	the	lines	and		estimates	in	Figure	6	indicate,	different	species	have	different	
relationships	with	even	the	best‐fit	flow	covariates.		For	example,	delta	smelt	
have	a	small,	but	significantly	inverse	relationship	(=‐0.09)with	Historical	
Inflow,	Mar‐May,	1yr	Lag.		This	implies	that	CPUE	actually	decreases	slightly	as	
that	flow	covariate	increases.		The	CPUE	of	longfin	smelt	and	Sacramento	
splittail	slight	positiverelationships	with	their	respective	best‐fit	flow	variables	
(longfin:	Historical	Outflow,	Jan‐Jun,	=0.40;	Sacramento	splittail:	Historical	
Outflow,	Jan‐June,	1yr	Lag,	=0.06)	Similarly	interpreted	positive	increases	in	
CPUE	with	flow	are	also	evident	with	the	other	species	examined.	
	
In	particular,	the	disparity	between	the	variable	and	relatively	small	statistical	
effects	of	flow	covariates	on	species	relative	abundance	and	very	significant	
variations	in	the	FMWT	survey’s	results	over	the	1967‐2010	period	
demonstrates	that	it	is	highly	uncertain	whether	changes	in	manageable	flow	
parameters	would	generate	any	statistically‐predictable	increases	in	the	relative	
abundances	of	those	species.		This	disparity	underscores	the	very	likely	idea	that	
covariates	other	than	flow	play	a	key	role	in	structuring	species’	relative	
abundance	in	the	Delta.		

	
4. More	Significant	Relationships	of	Species	Relative	Abundance	to	Other	

Environmental	Factors.		Comparisons	of	other	environmental	covariates	to	the	
CPUE	generated	by	the	FWMT	also	indicates	that	such	other	factors	may	have	a	
more	significant	effect	on	the	relative	abundance	of	species	than	any	flow	
parameter.		As	depicted	in	Figure	6,	this	point	is	supported	most	strongly	by	the	
statistical	relationships	between	CPUE	and	Secchi	Depth,	which	is	a	coarse		
indicator	of	turbidity	in	the	Delta.		Figure	6's	lines	and		estimates	in	columns	2	
and	4	indicate	that	Secchi	Depth	has	a	stronger	statistical	effect	on	CPUE	than	
any	of	the	flow	covariates,	with	the	exception	of	Unimpaired	Flow	for	starry	
flounder.		For	all	species,	there	is	an	inverse	relationship	between	Secchi	Depth	
and	CPUE,	indicating	that	higher	turbidity	(lower	Secchi	Depth	values	because	
the	Secchi	disk	cannot	be	seen	as	far	below	the	surface)	corresponds	to	higher	
prediced	CPUE,	and	vice‐versa	for	lower	turbidity	(higher	Secchi	Depth	values	
associated	with	seeing	the	disk	at	deeper	depths).		Table	2	summarizes	a	
comparison	of	the	estimated	effects	on	CPUE	modeled	with	the	lognormal	GLM	
for	the	‘best’	fitting	flow	covariate	and	Secchi	Depth,	and	in	each	case	except	for	
starry	flounder,	the	coefficient	of	Secchi	Depth	is	larger	in	magnitude	than	the	
coefficient	of	flow.			
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Table	2.		Summary	of	estimated	coefficients	from	the	flow	covariate	that	
provided	the	‘best’	fit	within	the	lognormal	GLM	model	and	Secchi	Depth.	
	

Species	 Estimated	coefficient	of	
‘best’	fitting	flow	

covariate	

Estimated	coefficient	
of	Secchi	Depth	

delta	smelt	 ‐0.09	 ‐0.49	
longfin	smelt	 0.40	 ‐0.94	

Sacramento	splittail	 0.06	 ‐0.19	
starry	flounder	 0.06	 ‐0.04	
threadfin	shad	 0.04	 ‐0.17	
Crangon	spp.	 0.36	 ‐1.08	

	
These	results	are	consistent	with	two	points	made	in	the	literature.		First,	there	
are	numerous	environmental	factors	affecting	species	in	the	Delta	and	adjusting	
controllable	flow	parameters	would	be	unlikely	to	provide	notable	benefits	for	
the	species	examined	in	this	study.		Second,	and	more	specifically,	these	results	
are	consistent	with	the	suggestion	in	the	literature	that	recent	reductions	in	the	
Delta's	turbidity	have	been	a	significant	factor	in	the	decline	of	the	Delta's	fish	
species.		As	indicated	in	Cloern	et	al.	(2011)	and	depicted	in	Figure	3	above,	
average	annual	Delta	turbidity	declined	approximately	40%	during	the	1975‐
2008	period	when	many	of	the	Delta's	fish	species	are	believed	to	have	declined.		
Schoellhamer	(2011)	has	further	suggested	that	a	step‐decrease	in	Delta	
turbidity	in	the	late	1990s,	possibly	as	a	result	of	the	depletion	of	the	Delta's	
erodible	sediment	pool,	may	have	contributed	to	the	noted	decline	in	relative	
abundance	during	the	early	2000s.	
	

Each	of	these	conclusions	must	be	understood	in	the	context	of	the	FMWT's	limitations	
since	all	are	based	on	statistical	analyses	that	rely	on	the	FWMT	survey	CPUE	data.		Most	
importantly,	the	fixed‐station	design	of	the	FWMT	cannot	document	changes	in	the	
distribution	and	habitat	utilization	of	species	within	the	Delta	that	very	likely	have	
occurred	during	1967‐2010.		Accordingly,	consideration	of	management	decisions	that	
could	be	based	on	FWMT	data	should	be	done	so	with	a	cognizant	understanding	of	biases	
associated	with	limitations	of	the	FMWT	program.	
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Appendix	A.		Tables	showing	the	‘daily’	analysis	model	fit	statistics	(A),	parameter	
estimates,	standard	errors,	and	p‐values	for	the	binomial	model	(B),		and	parameter	
estimates,	standard	errors,	and	p‐values	for	the	lognormal	model	(C)	fitted	to	FMWT	
survey	CPUE	data	for	delta	smelt,	longfin	smelt,	Sacramento	splittail,	starry	flounder,	
threadfin	shad,	and	Crangon	spp.		
	
Table	A1.	Delta	smelt	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 11138.0	 2436.4	 7076.9	 237.0	
D2	 Year,	Month,	Region	 9149.2	 447.6	 6918.6	 78.7	
D3	 Year,	Month,	Secchi	 10183.8	 1482.3	 6965.0	 125.0	

D4	
Year,	Month,	Region,	

Secchi	 8701.6	 0.0	 6840.0	 0.0	

Model	D4:	Binomial	null	deviance	=	12170.5	with	29%	explained,	lognormal	null	deviance	=	2815.9	with	19%	
explained.	
	
(B)	Delta	smelt:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐5.25	 0.39	 <0.0001	 1998	 0.55	 0.22	 0.01	
1968	 0.78	 0.21	 0.000238	 1999	 1.27	 0.21	 <0.0001
1969	 0.34	 0.24	 0.16	 2000	 0.87	 0.22	 <0.0001
1970	 1.91	 0.24	 <0.0001	 2001	 0.16	 0.22	 0.48	
1971	 1.83	 0.23	 <0.0001	 2002	 0.15	 0.23	 0.52	
1972	 1.51	 0.24	 <0.0001	 2003	 ‐0.18	 0.24	 0.45	
1973	 1.75	 0.22	 <0.0001	 2004	 ‐0.52	 0.28	 0.06	
1974	 n/a	 n/a	 n/a	 2005	 ‐0.86	 0.29	 0.003	
1975	 1.57	 0.22	 <0.0001	 2006	 ‐0.58	 0.30	 0.05	
1976	 1.50	 0.28	 <0.0001	 2007	 ‐0.85	 0.29	 0.004	
1977	 0.80	 0.23	 0.001	 2008	 ‐1.41	 0.40	 0.0005	
1978	 0.23	 0.22	 0.28	 2009	 ‐1.19	 0.36	 0.001	
1979	 n/a	 n/a	 n/a	 2010	 ‐0.34	 0.31	 0.27	
1980	 1.72	 0.22	 <0.0001	 Oct 0.12	 0.08	 0.11	
1981	 0.62	 0.22	 0.004	 Nov	 0.08	 0.08	 0.33	
1982	 0.00	 0.22	 1.00	 Dec	 0.21	 0.08	 0.01	
1983	 ‐0.33	 0.25	 0.18	 Region3	 n/a	 n/a	 n/a	
1984	 0.14	 0.23	 0.55	 Region4	 ‐0.56	 0.57	 0.33	
1985	 ‐0.32	 0.27	 0.24	 Region5	 ‐0.38	 0.61	 0.54	
1986	 ‐0.05	 0.22	 0.82	 Region7	 n/a	 n/a	 n/a	
1987	 ‐0.04	 0.24	 0.86	 Region8	 n/a	 n/a	 n/a	
1988	 ‐0.62	 0.26	 0.02	 Region10	 0.33	 0.58	 0.57	
1989	 0.72	 0.22	 0.001	 Region11	 0.88	 0.38	 0.02	
	 0.42	 0.24	 0.07	 Region12	 1.61	 0.35	 <0.0001
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1991	 0.95	 0.23	 <0.0001	 Region13	 3.24	 0.35	 <0.0001
1992	 0.07	 0.26	 0.78	 Region14	 3.05	 0.35	 <0.0001
1993	 1.50	 0.22	 <0.0001	 Region15	 3.97	 0.35	 <0.0001
1994	 ‐0.27	 0.27	 0.31	 Region16	 3.00	 0.35	 <0.0001
1995	 1.54	 0.21	 <0.0001	 Region17 1.23	 0.38	 0.001	
1996 ‐0.19	 0.24	 0.43	 Secchi	 ‐1.28	 0.06	 <0.0001
1997	 0.85	 0.23	 0.0002	 	    

	
(C)	Delta	smelt:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐0.51	 0.36	 0.16	 1998	 0.07	 0.17	 0.66	
1968	 0.18	 0.16	 0.27	 1999	 0.30	 0.16	 0.06	
1969	 0.06	 0.19	 0.74	 2000	 0.49	 0.17	 0.004	
1970	 0.77	 0.16	 <0.0001	 2001	 ‐0.08	 0.18	 0.66	
1971	 0.46	 0.16	 0.004	 2002	 ‐0.38	 0.19	 0.04	
1972	 0.67	 0.17	 <0.0001	 2003	 ‐0.07	 0.20	 0.74	
1973	 0.54	 0.15	 0.0005	 2004	 ‐0.19	 0.24	 0.43	
1974	 n/a	 n/a	 n/a	 2005	 ‐0.72	 0.25	 0.005	
1975	 0.29	 0.16	 0.06	 2006	 ‐0.48	 0.26	 0.06	
1976	 0.17	 0.21	 0.42	 2007	 ‐0.68	 0.26	 0.01	
1977	 0.26	 0.18	 0.14	 2008	 ‐0.30	 0.37	 0.42	
1978	 ‐0.23	 0.17	 0.17	 2009	 ‐0.43	 0.32	 0.19	
1979	 n/a	 n/a	 n/a	 2010	 ‐0.42	 0.27	 0.12	
1980	 0.69	 0.15	 <0.0001	 Oct 0.00	 0.06	 0.99	
1981	 0.001	 0.17	 0.99	 Nov	 ‐0.09	 0.06	 0.15	
1982	 ‐0.06	 0.18	 0.73	 Dec	 ‐0.13	 0.06	 0.02	
1983	 ‐0.23	 0.21	 0.26	 Region3	 n/a	 n/a	 n/a	
1984	 ‐0.32	 0.18	 0.08	 Region4	 0.68	 0.55	 0.22	
1985	 0.06	 0.23	 0.80	 Region5	 0.27	 0.59	 0.64	
1986	 ‐0.14	 0.18	 0.45	 Region7	 n/a	 n/a	 n/a	
1987	 0.28	 0.20	 0.17	 Region8	 n/a	 n/a	 n/a	
1988	 0.15	 0.22	 0.50	 Region10	 0.91	 0.55	 0.10	
1989	 0.26	 0.18	 0.14	 Region11	 0.47	 0.36	 0.19	
	 0.27	 0.19	 0.17	 Region12	 0.78	 0.34	 0.02	
1991	 0.73	 0.18	 <0.0001	 Region13	 1.18	 0.33	 0.0004	
1992	 0.24	 0.22	 0.27	 Region14	 1.14	 0.33	 0.001	
1993	 0.44	 0.17	 0.01	 Region15	 1.44	 0.33	 <0.0001
1994	 ‐0.40	 0.23	 0.08	 Region16	 0.86	 0.34	 0.01	
1995	 0.43	 0.16	 0.01	 Region17 0.46	 0.36	 0.20	
1996 ‐0.42	 0.20	 0.03	 Secchi	 ‐0.48	 0.05	 <0.0001
1997	 0.20	 0.18	 0.27	 	    

	



 

35 
 

Table	A2.	Longfin	smelt	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 14963.0	 3521.7	 16417.3	 715.5	
D2	 Year,	Month,	Region	 12113.0	 671.7	 15944.3	 242.5	
D3	 Year,	Month,	Secchi	 12969.3	 1528.0	 16104.4	 402.6	

D4	
Year,	Month,	Region,	

Secchi	 11441.3	 0.0	 15701.8	 0.0	

Model	D4:	Binomial	null	deviance	=	17971.0	with	37%	explained,	lognormal	null	deviance	=	13277.7	with	
44%	explained.	
	 	
(B)	Longfin	smelt:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 0.11	 0.21	 0.60	 1998	 ‐1.02	 0.22	 <0.0001
1968	 ‐0.84	 0.23	 0.0003	 1999	 ‐0.55	 0.21	 0.01	
1969	 ‐0.12	 0.25	 0.62	 2000	 ‐1.05	 0.22	 <0.0001
1970	 ‐1.29	 0.25	 <0.0001	 2001	 ‐2.88	 0.23	 <0.0001
1971	 ‐0.42	 0.23	 0.07	 2002	 ‐1.62	 0.22	 <0.0001
1972	 ‐1.95	 0.25	 <0.0001	 2003	 ‐2.15	 0.22	 <0.0001
1973	 ‐0.91	 0.23	 <0.0001	 2004	 ‐2.59	 0.24	 <0.0001
1974	 n/a	 n/a	 n/a	 2005	 ‐3.37	 0.25	 <0.0001
1975	 ‐0.97	 0.23	 <0.0001	 2006	 ‐1.87	 0.22	 <0.0001
1976	 ‐1.88	 0.31	 <0.0001	 2007	 ‐5.15	 0.41	 <0.0001
1977	 ‐2.24	 0.24	 <0.0001	 2008	 ‐2.93	 0.26	 <0.0001
1978	 ‐0.51	 0.22	 0.02	 2009	 ‐3.28	 0.27	 <0.0001
1979	 n/a	 n/a	 n/a	 2010	 ‐3.13	 0.26	 <0.0001
1980	 0.06	 0.23	 0.80	 Oct 0.30	 0.07	 <0.0001
1981	 ‐1.06	 0.22	 <0.0001	 Nov	 1.09	 0.07	 <0.0001
1982	 ‐0.08	 0.22	 0.710423	 Dec	 1.93	 0.07	 <0.0001
1983	 ‐1.26	 0.22	 <0.0001	 Region3	 ‐0.88	 0.15	 <0.0001
1984	 ‐0.12	 0.23	 0.60	 Region4	 ‐0.80	 0.17	 <0.0001
1985	 ‐1.31	 0.23	 <0.0001	 Region5	 ‐0.78	 0.19	 <0.0001
1986	 ‐0.18	 0.22	 0.39	 Region7	 ‐1.24	 0.21	 <0.0001
1987	 ‐1.11	 0.21	 <0.0001	 Region8	 ‐0.39	 0.15	 0.01	
1988	 ‐2.18	 0.22	 <0.0001	 Region10	 ‐0.76	 0.24	 0.002	
1989	 ‐2.33	 0.23	 <0.0001	 Region11	 0.14	 0.13	 0.31	
	 ‐2.32	 0.23	 <0.0001	 Region12	 0.68	 0.13	 <0.0001
1991	 ‐2.39	 0.23	 <0.0001	 Region13	 0.17	 0.12	 0.16	
1992	 ‐3.10	 0.26	 <0.0001	 Region14	 ‐0.38	 0.13	 0.005	
1993	 ‐1.20	 0.22	 <0.0001	 Region15	 ‐0.50	 0.13	 <0.0001
1994	 ‐2.21	 0.23	 <0.0001	 Region16	 ‐1.98	 0.14	 <0.0001
1995	 ‐0.34	 0.22	 0.12	 Region17 ‐4.19	 0.26	 <0.0001
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1996 ‐2.46	 0.23	 <0.0001	 Secchi	 ‐1.16	 0.05	 <0.0001
1997	 ‐1.86	 0.22	 <0.0001	 	    

	
	
(C)	Longfin	smelt:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 3.42	 0.14	 <0.0001	 1998	 ‐2.08	 0.13	 <0.0001
1968	 ‐1.73	 0.14	 <0.0001	 1999	 ‐2.26	 0.13	 <0.0001
1969	 ‐0.39	 0.15	 0.01	 2000	 ‐2.03	 0.14	 <0.0001
1970	 ‐2.21	 0.16	 <0.0001	 2001	 ‐3.55	 0.18	 <0.0001
1971	 ‐1.07	 0.14	 <0.0001	 2002	 ‐2.78	 0.15	 <0.0001
1972	 ‐2.80	 0.19	 <0.0001	 2003	 ‐3.09	 0.16	 <0.0001
1973	 ‐1.82	 0.14	 <0.0001	 2004	 ‐3.18	 0.20	 <0.0001
1974	 n/a	 n/a	 n/a	 2005	 ‐3.54	 0.22	 <0.0001
1975	 ‐2.23	 0.14	 <0.0001	 2006	 ‐2.60	 0.16	 <0.0001
1976	 ‐2.89	 0.28	 <0.0001	 2007	 ‐3.69	 0.46	 <0.0001
1977	 ‐2.64	 0.20	 <0.0001	 2008	 ‐3.18	 0.24	 <0.0001
1978	 ‐1.76	 0.13	 <0.0001	 2009	 ‐3.51	 0.24	 <0.0001
1979	 n/a	 n/a	 n/a	 2010	 ‐3.12	 0.24	 <0.0001
1980	 ‐0.34	 0.13	 0.01	 Oct 0.30	 0.06	 <0.0001
1981	 ‐2.50	 0.14	 <0.0001	 Nov	 0.349	 0.06	 <0.0001
1982	 ‐0.65	 0.13	 <0.0001	 Dec	 0.28	 0.06	 <0.0001
1983	 ‐1.80	 0.14	 <0.0001	 Region3	 ‐0.09	 0.13	 0.51	
1984	 ‐1.83	 0.13	 <0.0001	 Region4	 ‐0.50	 0.14	 0.0005	
1985	 ‐2.24	 0.17	 <0.0001	 Region5	 ‐0.73	 0.17	 <0.0001
1986	 ‐1.59	 0.13	 <0.0001	 Region7	 ‐0.46	 0.20	 0.02	
1987	 ‐2.51	 0.14	 <0.0001	 Region8	 0.32	 0.13	 0.01	
1988	 ‐2.89	 0.16	 <0.0001	 Region10	 ‐0.54	 0.20	 0.01	
1989	 ‐2.94	 0.18	 <0.0001	 Region11	 ‐0.11	 0.11	 0.30	
	 ‐3.23	 0.18	 <0.0001	 Region12	 0.35	 0.10	 0.00	
1991	 ‐3.34	 0.19	 <0.0001	 Region13	 0.05	 0.10	 0.59	
1992	 ‐3.41	 0.24	 <0.0001	 Region14	 ‐0.30	 0.11	 0.01	
1993	 ‐2.67	 0.15	 <0.0001	 Region15	 ‐0.36	 0.11	 0.001	
1994	 ‐2.99	 0.18	 <0.0001	 Region16	 ‐1.31	 0.12	 <0.0001
1995	 ‐2.04	 0.13	 <0.0001	 Region17 ‐1.90	 0.30	 <0.0001
1996 ‐2.78	 0.17	 <0.0001	 Secchi	 ‐0.64	 0.04	 <0.0001
1997	 ‐2.97	 0.16	 <0.0001	 	    
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Table	A3.	Sacramento	splittail	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 3396.7	 624.0	 861.9	 21.4	
D2	 Year,	Month,	Region	 2960.0	 187.3	 843.1	 2.7	
D3	 Year,	Month,	Secchi	 2914.8	 142.1	 851.6	 11.1	

D4	
Year,	Month,	Region,	

Secchi	 2772.7	 0.0	 840.4	 0.0	

Model	D4:	Binomial	null	deviance	=	3944.0	with	30%	explained,	lognormal	null	deviance	=	173.5	with	21%	
explained.	
	 	
(B)	Sacramento	splittail:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐5.79	 0.67	 <0.0001	 1998	 1.45	 0.29	 <0.0001
1968	 ‐0.54	 0.39	 0.17	 1999	 ‐0.13	 0.37	 0.72	
1969	 ‐0.43	 0.41	 0.30	 2000	 ‐0.38	 0.44	 0.39	
1970	 ‐1.32	 0.53	 0.01	 2001	 ‐0.42	 0.39	 0.28	
1971	 ‐1.07	 0.49	 0.03	 2002	 ‐2.71	 1.04	 0.01	
1972	 ‐0.91	 0.57	 0.11	 2003	 ‐1.02	 0.49	 0.04	
1973	 ‐1.78	 0.56	 0.002	 2004	 ‐0.97	 0.58	 0.09	
1974	 n/a	 n/a	 n/a	 2005	 ‐2.56	 1.04	 0.01	
1975	 ‐1.90	 0.57	 0.001	 2006	 ‐1.18	 0.58	 0.04	
1976	 ‐0.57	 1.05	 0.59	 2007	 ‐2.53	 1.04	 0.01	
1977	 n/a	 n/a	 n/a	 2008	 n/a	 n/a	 n/a	
1978	 ‐0.10	 0.33	 0.77	 2009	 ‐1.83	 1.04	 0.08	
1979	 n/a	 n/a	 n/a	 2010	 n/a	 n/a	 n/a	
1980	 ‐0.62	 0.40	 0.12	 Oct ‐0.31	 0.14	 0.03	
1981	 ‐0.50	 0.41	 0.23	 Nov	 ‐0.49	 0.16	 0.002	
1982	 0.50	 0.31	 0.10	 Dec	 ‐0.57	 0.15	 0.0001	
1983	 0.87	 0.31	 0.01	 Region3	 n/a	 n/a	 n/a	
1984	 ‐0.39	 0.39	 0.32	 Region4	 0.86	 0.71	 0.22	
1985	 0.45	 0.43	 0.29	 Region5	 0.77	 0.75	 0.31	
1986	 0.93	 0.31	 0.002	 Region7	 n/a	 n/a	 n/a	
1987	 0.63	 0.36	 0.08	 Region8	 n/a	 n/a	 n/a	
1988	 ‐0.53	 0.43	 0.22	 Region10	 2.42	 0.70	 0.001	
1989	 ‐1.76	 0.76	 0.02	 Region11	 1.47	 0.63	 0.02	
	 0.21	 0.44	 0.63	 Region12	 1.65	 0.60	 0.01	
1991	 0.43	 0.43	 0.32	 Region13	 1.66	 0.60	 0.01	
1992	 ‐0.63	 0.65	 0.34	 Region14	 2.91	 0.60	 <0.0001
1993	 ‐0.14	 0.47	 0.76	 Region15	 1.53	 0.61	 0.01	
1994	 ‐1.44	 0.76	 0.06	 Region16	 1.33	 0.63	 0.04	
1995	 0.98	 0.33	 0.003	 Region17 ‐0.18	 0.83	 0.83	
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1996 ‐0.18	 0.39	 0.65	 Secchi	 ‐2.02	 0.16	 <0.0001
1997	 ‐2.09	 1.04	 0.04	 	    

	
	
	
(C)	Sacramento	splittail:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 0.18	 0.38	 0.63	 1998	 0.19	 0.14	 0.18	
1968	 ‐0.17	 0.21	 0.40	 1999	 0.04	 0.19	 0.84	
1969	 ‐0.36	 0.21	 0.09	 2000	 ‐0.34	 0.24	 0.16	
1970	 ‐0.19	 0.31	 0.55	 2001	 ‐0.15	 0.21	 0.49	
1971	 ‐0.59	 0.27	 0.03	 2002	 ‐0.30	 0.61	 0.62	
1972	 0.16	 0.32	 0.61	 2003	 ‐0.28	 0.27	 0.30	
1973	 ‐0.59	 0.32	 0.06	 2004	 ‐0.52	 0.32	 0.10	
1974	 n/a	 n/a	 n/a	 2005	 ‐0.99	 0.63	 0.12	
1975	 ‐0.56	 0.31	 0.08	 2006	 ‐0.45	 0.32	 0.16	
1976	 ‐0.63	 0.60	 0.29	 2007	 ‐0.71	 0.59	 0.23	
1977	 n/a	 n/a	 n/a	 2008	 n/a	 n/a	 n/a	
1978	 ‐0.34	 0.17	 0.04	 2009	 ‐0.46	 0.60	 0.44	
1979	 n/a	 n/a	 n/a	 2010	 n/a	 n/a	 n/a	
1980	 ‐0.43	 0.21	 0.04	 Oct ‐0.09	 0.07	 0.24	
1981	 ‐0.13	 0.22	 0.56	 Nov	 ‐0.01	 0.09	 0.87	
1982	 ‐0.27	 0.16	 0.08	 Dec	 ‐0.19	 0.09	 0.02	
1983	 ‐0.21	 0.17	 0.21	 Region3	 n/a	 n/a	 n/a	
1984	 ‐0.33	 0.21	 0.11	 Region4	 0.35	 0.41	 0.39	
1985	 ‐0.08	 0.23	 0.72	 Region5	 0.63	 0.42	 0.14	
1986	 ‐0.18	 0.16	 0.24	 Region7	 n/a	 n/a	 n/a	
1987	 ‐0.04	 0.19	 0.85	 Region8	 n/a	 n/a	 n/a	
1988	 ‐0.41	 0.24	 0.08	 Region10	 0.62	 0.40	 0.13	
1989	 0.24	 0.43	 0.58	 Region11	 0.29	 0.36	 0.43	
	 ‐0.40	 0.24	 0.09	 Region12	 0.12	 0.35	 0.72	
1991	 ‐0.15	 0.23	 0.51	 Region13	 0.07	 0.35	 0.85	
1992	 ‐0.30	 0.38	 0.42	 Region14	 0.37	 0.35	 0.29	
1993	 ‐0.16	 0.26	 0.54	 Region15	 0.04	 0.36	 0.91	
1994	 ‐0.17	 0.44	 0.70	 Region16	 0.05	 0.37	 0.90	
1995	 ‐0.14	 0.17	 0.41	 Region17 0.05	 0.49	 0.92	
1996 ‐0.21	 0.21	 0.33	 Secchi	 ‐0.18	 0.09	 0.04	
1997	 ‐0.28	 0.60	 0.64	 	    
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Table	A4.	Starry	flounder	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 3162.3	 289.0	 528.8	 13.1	
D2	 Year,	Month,	Region	 2964.0	 92.0	 514.1	 0.0	
D3	 Year,	Month,	Secchi	 3029.9	 143.6	 527.9	 13.9	

D4	
Year,	Month,	Region,	

Secchi	 2881.0	 0.0	 513.5	 0.21	

Model	D4:	Binomial	null	deviance	=	3395.7	with	18%	explained,	lognormal	null	deviance	=	84.1	with	23%	
explained.	
	
	 	
(B)	Starry	flounder:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐3.62	 0.47	 <0.0001	 1998	 ‐0.32	 0.35	 0.37	
1968	 ‐1.47	 0.64	 0.02	 1999	 ‐0.62	 0.40	 0.12	
1969	 0.17	 0.39	 0.66	 2000	 ‐0.89	 0.47	 0.06	
1970	 ‐0.71	 0.45	 0.12	 2001	 ‐1.32	 0.49	 0.01	
1971	 0.57	 0.34	 0.09	 2002	 ‐1.37	 0.57	 0.02	
1972	 0.66	 0.39	 0.09	 2003	 ‐1.13	 0.47	 0.02	
1973	 ‐0.38	 0.39	 0.33	 2004	 ‐0.77	 0.50	 0.13	
1974	 n/a	 n/a	 n/a	 2005	 ‐1.83	 0.64	 0.004	
1975	 0.44	 0.34	 0.19	 2006	 ‐1.12	 0.50	 0.02	
1976	 0.17	 0.66	 0.80	 2007	 ‐1.65	 0.64	 0.01	
1977	 ‐0.62	 0.58	 0.29	 2008	 ‐0.15	 0.46	 0.75	
1978	 ‐0.67	 0.38	 0.08	 2009	 ‐1.28	 0.65	 0.05	
1979	 n/a	 n/a	 n/a	 2010	 ‐2.75	 1.04	 0.01	
1980	 0.71	 0.33	 0.03	 Oct 0.01	 0.15	 0.96	
1981	 ‐0.39	 0.41	 0.34	 Nov	 ‐0.26	 0.16	 0.10	
1982	 ‐0.44	 0.36	 0.22	 Dec	 ‐0.47	 0.16	 0.003	
1983	 ‐0.53	 0.39	 0.17	 Region3	 1.06	 0.43	 0.01	
1984	 ‐0.81	 0.43	 0.06	 Region4	 1.38	 0.42	 0.001	
1985	 0.20	 0.46	 0.66	 Region5	 1.91	 0.42	 <0.0001
1986	 ‐0.89	 0.43	 0.04	 Region7	 0.21	 0.63	 0.73	
1987	 ‐0.92	 0.45	 0.04	 Region8	 0.30	 0.51	 0.56	
1988	 ‐2.43	 0.76	 0.001	 Region10	 0.96	 0.52	 0.07	
1989	 ‐2.81	 1.04	 0.007	 Region11	 0.74	 0.40	 0.07	
	 n/a	 n/a	 n/a	 Region12	 0.80	 0.38	 0.04	
1991	 ‐0.98	 0.53	 0.07	 Region13	 0.27	 0.38	 0.48	
1992	 ‐1.38	 0.65	 0.03	 Region14	 0.07	 0.41	 0.87	
1993	 ‐2.61	 1.04	 0.01	 Region15	 ‐0.77	 0.45	 0.09	
1994	 ‐1.56	 0.65	 0.02	 Region16	 ‐2.22	 0.68	 0.001	
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1995	 ‐1.60	 0.57	 0.01	 Region17 n/a	 n/a	 n/a	
1996 ‐1.24	 0.49	 0.01	 Secchi	 ‐1.15	 0.13	 <0.0001
1997	 ‐0.46	 0.44	 0.29	 	    

	
	
(C)	Starry	flounder:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐0.26	 0.21	 0.23	 1998	 ‐0.11	 0.15	 0.46	
1968	 0.08	 0.28	 0.77	 1999	 ‐0.02	 0.17	 0.89	
1969	 ‐0.01	 0.17	 0.96	 2000	 ‐0.05	 0.21	 0.81	
1970	 0.14	 0.18	 0.48	 2001	 ‐0.22	 0.22	 0.33	
1971	 0.30	 0.14	 0.04	 2002	 0.01	 0.26	 0.97	
1972	 0.19	 0.16	 0.25	 2003	 0.18	 0.21	 0.38	
1973	 0.23	 0.17	 0.18	 2004	 ‐0.14	 0.22	 0.52	
1974	 n/a	 n/a	 n/a	 2005	 ‐0.39	 0.29	 0.18	
1975	 0.36	 0.14	 0.01	 2006	 0.15	 0.22	 0.49	
1976	 0.57	 0.28	 0.05	 2007	 ‐0.08	 0.29	 0.79	
1977	 ‐0.10	 0.25	 0.70	 2008	 0.13	 0.21	 0.54	
1978	 ‐0.07	 0.17	 0.67	 2009	 0.05	 0.29	 0.85	
1979	 n/a	 n/a	 n/a	 2010	 0.11	 0.47	 0.82	
1980	 0.37	 0.14	 0.01	 Oct ‐0.04	 0.07	 0.53	
1981	 0.13	 0.18	 0.47	 Nov	 0.02	 0.07	 0.82	
1982	 ‐0.04	 0.15	 0.81	 Dec	 ‐0.01	 0.07	 0.87	
1983	 0.15	 0.17	 0.38	 Region3	 0.39	 0.20	 0.05	
1984	 0.16	 0.19	 0.42	 Region4	 0.61	 0.20	 0.003	
1985	 0.39	 0.20	 0.048	 Region5	 0.61	 0.20	 0.003	
1986	 0.09	 0.19	 0.62	 Region7	 0.24	 0.29	 0.40	
1987	 ‐0.12	 0.20	 0.55	 Region8	 0.26	 0.24	 0.28	
1988	 ‐0.02	 0.34	 0.96	 Region10	 0.45	 0.24	 0.07	
1989	 ‐0.01	 0.46	 0.98	 Region11	 0.26	 0.19	 0.17	
	 n/a	 n/a	 n/a	 Region12	 0.42	 0.18	 0.03	
1991	 ‐0.03	 0.24	 0.91	 Region13	 0.27	 0.18	 0.15	
1992	 0.24	 0.28	 0.39	 Region14	 0.13	 0.20	 0.49	
1993	 0.02	 0.47	 0.96	 Region15	 0.25	 0.22	 0.26	
1994	 0.001	 0.31	 1.00	 Region16	 0.72	 0.32	 0.03	
1995	 0.31	 0.27	 0.24	 Region17 n/a	 n/a	 n/a	
1996 0.32	 0.22	 0.15	 Secchi	 ‐0.07	 0.06	 0.22	
1997	 0.31	 0.19	 0.11	 	    
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Table	A5.	Threadfin	shad	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 15405.4  2736.5  14770.0  1241.6 

D2	 Year,	Month,	Region	 13067.7  398.8  13548.0  19.7 

D3	 Year,	Month,	Secchi	 15321.4  2652.4  14629.1  1100.7 

D4	
Year,	Month,	Region,	

Secchi	
12669.0  0.0  13528.3  0.0 

Model	D4:	Binomial	null	deviance	=	16877.0	with	26%	explained,	lognormal	null	deviance	=	9796.9	with	34%	
explained.	
	 	
(B)	Threadfin	shad:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 ‐1.73	 0.20	 <0.0001	 1998	 0.02	 0.18	 0.91	
1968	 ‐0.26	 0.20	 0.20	 1999	 ‐0.93	 0.19	 <0.0001
1969	 ‐0.06	 0.21	 0.79	 2000	 ‐1.41	 0.20	 <0.0001
1970	 0.02	 0.21	 0.94	 2001	 ‐0.72	 0.19	 0.0001	
1971	 ‐0.73	 0.21	 0.0004	 2002	 ‐1.25	 0.20	 <0.0001
1972	 ‐0.63	 0.22	 0.004	 2003	 ‐1.23	 0.19	 <0.0001
1973	 ‐1.52	 0.22	 <0.0001	 2004	 ‐1.26	 0.21	 <0.0001
1974	 n/a	 n/a	 n/a	 2005	 ‐1.23	 0.20	 <0.0001
1975	 ‐1.43	 0.21	 <0.0001	 2006	 ‐0.81	 0.20	 <0.0001
1976	 ‐1.65	 0.29	 <0.0001	 2007	 ‐1.40	 0.21	 <0.0001
1977	 ‐0.75	 0.21	 0.0003	 2008	 ‐1.72	 0.23	 <0.0001
1978	 ‐2.30	 0.22	 <0.0001	 2009	 ‐2.55	 0.28	 <0.0001
1979	 n/a	 n/a	 n/a	 2010	 ‐1.98	 0.26	 <0.0001
1980	 ‐1.73	 0.21	 <0.0001	 Oct 0.46	 0.07	 <0.0001
1981	 ‐1.73	 0.21	 <0.0001	 Nov	 1.07	 0.07	 <0.0001
1982	 ‐1.90	 0.20	 <0.0001	 Dec	 1.41	 0.07	 <0.0001
1983	 ‐0.21	 0.19	 0.26	 Region3	 ‐0.52	 0.20	 0.01	
1984	 ‐1.92	 0.22	 <0.0001	 Region4	 ‐0.02	 0.19	 0.91	
1985	 ‐1.32	 0.22	 <0.0001	 Region5	 ‐0.17	 0.22	 0.46	
1986	 ‐1.71	 0.20	 <0.0001	 Region7	 0.06	 0.23	 0.79	
1987	 ‐1.69	 0.21	 <0.0001	 Region8	 ‐0.86	 0.21	 0.00	
1988	 ‐1.84	 0.21	 <0.0001	 Region10	 ‐0.19	 0.28	 0.49	
1989	 ‐2.06	 0.22	 <0.0001	 Region11	 ‐0.11	 0.16	 0.51	
	 ‐0.55	 0.19	 0.004	 Region12	 ‐0.43	 0.15	 0.005	
1991	 ‐0.76	 0.19	 <0.0001	 Region13	 0.12	 0.14	 0.39	
1992	 ‐0.25	 0.19	 0.19	 Region14	 0.94	 0.15	 <0.0001
1993	 ‐0.06	 0.19	 0.77	 Region15	 1.70	 0.14	 <0.0001
1994	 ‐0.33	 0.19	 0.09	 Region16	 2.17	 0.14	 <0.0001
1995	 ‐0.57	 0.19	 0.002	 Region17 2.99	 0.15	 <0.0001
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1996 ‐1.03	 0.19	 <0.0001	 Secchi	 ‐0.83	 0.04	 <0.0001
1997	 0.11	 0.19	 0.57	 	    

	
(C)	Threadfin	shad:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 1.44	 0.19	 <0.0001	 1998	 ‐0.32  0.13  0.02 

1968	 ‐0.53	 0.14	 0.0002	 1999	 ‐0.39  0.15  0.01 

1969	 ‐0.45	 0.15	 0.003	 2000	 ‐0.93  0.16  <0.0001 

1970	 ‐0.72	 0.15	 <0.0001	 2001	 ‐0.12  0.14  0.39 

1971	 ‐0.49	 0.16	 0.002	 2002	 ‐0.59  0.17  0.001 

1972	 ‐0.58	 0.17	 0.001	 2003	 ‐0.66  0.16  <0.0001 

1973	 ‐0.91	 0.19	 <0.0001	 2004	 ‐0.58  0.18  0.001 

1974	 n/a	 n/a	 n/a	 2005	 ‐0.65  0.17  0.0001 

1975	 ‐0.95	 0.19	 <0.0001	 2006	 ‐0.55  0.17  0.001 

1976	 ‐0.84	 0.28	 0.003	 2007	 ‐0.71  0.19  0.0002 

1977	 ‐0.05	 0.16	 0.75	 2008	 ‐0.90  0.23  <0.0001 

1978	 ‐1.11	 0.20	 <0.0001	 2009	 ‐1.33  0.30  <0.0001 

1979	 n/a	 n/a	 n/a	 2010	 ‐0.90  0.27  0.001 

1980	 ‐0.57	 0.18	 0.002	 Oct 0.00  0.06  0.97 

1981	 ‐0.71	 0.18	 <0.0001	 Nov	 ‐0.04  0.06  0.50 

1982	 ‐1.13	 0.18	 <0.0001	 Dec	 ‐0.22  0.06  0.0005 

1983	 ‐0.51	 0.14	 0.0002	 Region3	 0.14  0.22  0.51 

1984	 ‐0.54	 0.21	 0.010	 Region4	 0.06  0.21  0.78 

1985	 ‐0.66	 0.19	 0.001	 Region5	 0.15  0.24  0.54 

1986	 ‐0.99	 0.17	 <0.0001	 Region7	 ‐0.14  0.25  0.57 

1987	 ‐0.67	 0.18	 0.0002	 Region8	 0.02  0.24  0.95 

1988	 ‐0.98	 0.20	 <0.0001	 Region10	 ‐0.38  0.30  0.21 

1989	 ‐0.62	 0.20	 0.002	 Region11	 ‐0.18  0.18  0.31 

	 ‐0.80	 0.15	 <0.0001	 Region12	 ‐0.37  0.17  0.03 

1991	 ‐0.51	 0.16	 0.002	 Region13	 ‐0.17  0.15  0.27 

1992	 ‐0.49	 0.15	 0.001	 Region14	 0.29  0.16  0.07 

1993	 ‐0.13	 0.14	 0.375	 Region15	 0.39  0.15  0.01 

1994	 ‐0.58	 0.15	 <0.0001	 Region16	 0.69  0.15  <0.0001 

1995	 ‐0.64	 0.15	 <0.0001	 Region17 2.24  0.15  <0.0001 

1996 ‐0.49	 0.16	 0.002	 Secchi	 ‐0.18  0.04  <0.0001 

1997	 0.12	 0.14	 0.38	 	    
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Table	A6.	Crangon	spp.	
(A)	

Model		 Covariates	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

D1	 Year,	Month	 13403.6	 3325.5	 13021.6	 340.7	
D2	 Year,	Month,	Region	 11302.6	 1224.5	 12821.0	 140.1	
D3	 Year,	Month,	Secchi	 11368.1	 1290.0	 12952.7	 271.7	

D4	
Year,	Month,	Region,	

Secchi	 10078.1	 0.0	 12681.0	 0.0	

Model	D4:	Binomial	null	deviance	=	14730.9	with	32%	explained,	lognormal	null	deviance	=	12128.9	with	
37%	explained.	
	 	
(B)	Crangon	spp.:	Binomial	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 0.02	 0.20	 0.91	 1998	 ‐0.85	 0.21	 <0.0001
1969	 ‐0.50	 0.25	 0.045	 1999	 ‐0.52	 0.21	 0.014	
1970	 ‐0.85	 0.26	 0.001	 2000	 ‐0.86	 0.21	 <0.0001
1971	 ‐0.96	 0.23	 <0.0001	 2001	 ‐2.10	 0.23	 <0.0001
1972	 ‐1.22	 0.35	 <0.0001	 2002	 ‐1.38	 0.22	 <0.0001
1973	 ‐0.71	 0.22	 0.001	 2003	 ‐0.85	 0.21	 <0.0001
1974	 n/a	 n/a	 n/a	 2004	 ‐2.28	 0.27	 <0.0001
1975	 ‐0.73	 0.22	 0.001	 2005	 ‐3.10	 0.30	 <0.0001
1976	 ‐0.70	 0.32	 0.027	 2006	 ‐2.40	 0.26	 <0.0001
1977	 ‐0.42	 0.23	 0.069	 2007	 ‐4.48	 0.49	 <0.0001
1978	 ‐0.74	 0.21	 0.001	 2008	 ‐3.59	 0.46	 <0.0001
1979	 n/a	 n/a	 n/a	 2009	 ‐1.40	 0.25	 <0.0001
1980	 ‐0.31	 0.22	 0.16	 2010	 ‐1.94	 0.26	 <0.0001
1981	 ‐0.49	 0.21	 0.022	 Oct ‐0.12	 0.07	 0.10	
1982	 ‐1.11	 0.21	 <0.0001	 Nov	 ‐0.02	 0.07	 0.75	
1983	 ‐1.82	 0.22	 <0.0001	 Dec	 ‐0.35	 0.07	 <0.0001
1984	 ‐0.62	 0.22	 0.004	 Region3	 ‐1.34	 0.18	 <0.0001
1985	 ‐0.88	 0.25	 0.0003	 Region4	 ‐1.73	 0.19	 <0.0001
1986	 0.05	 0.21	 0.82	 Region5	 ‐2.02	 0.23	 <0.0001
1987	 ‐0.17	 0.21	 0.41	 Region7	 ‐2.84	 0.34	 <0.0001
1988	 ‐1.00	 0.21	 <0.0001	 Region8	 ‐0.71	 0.17	 <0.0001
1989	 ‐0.89	 0.22	 <0.0001	 Region10	 ‐1.25	 0.25	 <0.0001
	 0.43	 0.21	 0.04	 Region11	 0.33	 0.13	 0.012	
1991	 0.096	 0.21	 0.65	 Region12	 0.54	 0.13	 <0.0001
1992	 ‐0.21	 0.22	 0.33	 Region13	 ‐0.34	 0.12	 0.005	
1993	 ‐0.75	 0.22	 0.001	 Region14	 ‐1.11	 0.14	 <0.0001
1994	 ‐0.41	 0.22	 0.056	 Region15	 ‐1.34	 0.13	 <0.0001
1995	 ‐0.78	 0.22	 0.0003	 Region16	 ‐2.45	 0.16	 <0.0001
1996 ‐1.81	 0.22	 <0.0001	 Region17 n/a	 n/a	 n/a	
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1997	 ‐0.96	 0.22	 <0.0001	 Secchi	 ‐1.86	 0.05	 <0.0001
	
	
(C)	Crangon	spp.:	Lognormal	component	
Parameter		 Estimate	 SE	 p‐value	 Parameter	 Estimate	 SE	 p‐value

0	 3.49	 0.19	 <0.0001	 1998	 ‐0.24	 0.19	 0.20	
1969	 1.33	 0.22	 <0.0001	 1999	 ‐0.70	 0.19	 0.0002	
1970	 ‐0.07	 0.22	 0.75	 2000	 ‐0.54	 0.20	 0.01	
1971	 0.52	 0.21	 0.01	 2001	 ‐1.42	 0.24	 <0.0001
1972	 ‐0.88	 0.26	 0.00	 2002	 ‐1.29	 0.23	 <0.0001
1973	 ‐0.17	 0.19	 0.38	 2003	 ‐1.96	 0.20	 <0.0001
1974	 n/a	 n/a	 n/a	 2004	 ‐2.12	 0.33	 <0.0001
1975	 0.52	 0.20	 0.01	 2005	 ‐2.32	 0.38	 <0.0001
1976	 ‐0.05	 0.37	 0.90	 2006	 ‐0.67	 0.31	 0.028	
1977	 ‐0.35	 0.24	 0.14	 2007	 ‐2.62	 0.69	 0.0001	
1978	 0.04	 0.18	 0.82	 2008	 ‐2.00	 0.63	 0.001	
1979	 n/a	 n/a	 n/a	 2009	 ‐1.83	 0.28	 <0.0001
1980	 1.03	 0.19	 <0.0001	 2010	 ‐1.18	 0.31	 0.0001	
1981	 ‐0.19	 0.19	 0.32	 Oct ‐0.14	 0.07	 0.046	
1982	 1.00	 0.19	 <0.0001	 Nov	 ‐0.57	 0.08	 <0.0001
1983	 0.22	 0.22	 0.32	 Dec	 ‐0.93	 0.07	 <0.0001
1984	 0.51	 0.19	 0.01	 Region3	 ‐0.08	 0.22	 0.72	
1985	 ‐0.84	 0.26	 0.001	 Region4	 ‐0.84	 0.23	 0.0003	
1986	 0.94	 0.18	 <0.0001	 Region5	 ‐1.54	 0.29	 <0.0001
1987	 ‐0.35	 0.19	 0.06	 Region7	 ‐1.04	 0.47	 0.03	
1988	 ‐1.14	 0.20	 <0.0001	 Region8	 0.39	 0.21	 0.06	
1989	 ‐0.92	 0.22	 <0.0001	 Region10	 ‐0.92	 0.30	 0.00	
	 ‐0.71	 0.19	 0.0001	 Region11	 ‐0.07	 0.14	 0.60	
1991	 ‐0.76	 0.20	 0.0001	 Region12	 0.02	 0.13	 0.86	
1992	 ‐1.02	 0.22	 <0.0001	 Region13	 ‐0.38	 0.13	 0.003	
1993	 ‐0.71	 0.23	 0.002	 Region14	 ‐1.02	 0.15	 <0.0001
1994	 ‐0.53	 0.21	 0.01	 Region15	 ‐0.22	 0.15	 0.16	
1995	 ‐0.60	 0.20	 0.003	 Region16	 ‐2.14	 0.20	 <0.0001
1996 ‐0.78	 0.23	 0.001	 Region17 n/a	 n/a	 n/a	
1997	 ‐0.47	 0.23	 0.045	 Secchi	 ‐0.80	 0.07	 <0.0001
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Appendix	B.		Tables	showing	‘annual’	analysis	model	fit	statistics	(A),	parameter	estimates,	
standard	errors,	and	p‐values	for	the	‘best’	fitting	binomial	and	lognormal	models	(B)	fitted	
to	FMWT	survey	CPUE	data	for	delta	smelt,	longfin	smelt,	Sacramento	splittail,	starry	
flounder,	threadfin	shad,	and	Crangon	spp.		
	
Table	B1.	Delta	smelt	
(A)	

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐	
Jun	

9500.7	 12.0	 7048.6	 17.3	

A	2	
Historical	Outflow,	

Mar‐May	 9505.4	 16.7	 7044.8	 13.5	

A	3	
Unimpaired	Outflow,	

Jan‐Jun	 9497.0	 8.3	 7048.6	 17.3	

A	4	
Unimpaired	Outflow,	

Mar‐May	 9505.9	 17.2	 7045.8	 14.5	

A	5	
Historical	Inflow,	Jan‐	

Jun	 9495.0	 6.3	 7048.1	 16.8	

A	6	
Historical	Inflow,	Mar‐	

May	 9505.8	 17.1	 7047.1	 15.7	

A	7	
Unimpaired	Inflow,	

Jan‐Jun	
9488.7	 0.0	 7048.2	 16.9	

A	8	
Unimpaired	Inflow,	

Mar‐May	 9503.6	 14.9	 7047.4	 16.1	

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	 9504.6	 16.0	 7044.5	 13.2	

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	 9500.5	 11.8	 7034.0	 2.7	

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	

9505.4	 16.8	 7045.9	 14.6	

A	12	
Unimpaired	Outflow,	

Mar‐May	 9501.7	 13.0	 7041.2	 9.8	

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	 9505.6	 16.9	 7042.6	 11.2	

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	
9498.6	 9.9	 7031.3	 0.0	

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 9504.7	 16.0	 7045.9	 14.6	

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	 9501.5	 12.8	 7040.0	 8.6	
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(B)	Delta	smelt			
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐value
0	 ‐4.71	 0.34	 <0.0001 0 ‐0.38	 0.34	 0.27	

Unimp.Inflow.Jan‐
Jun	

0.11	 0.03	 <0.0001 Hist.Inflow.MM.1yrLag ‐0.09	 0.02	 <0.0001

Oct	 0.16	 0.07	 0.02	 Oct 0.007	 0.06	 0.90	
Nov	 0.20	 0.07	 0.007	 Nov	 ‐0.05	 0.06	 0.40	
Dec	 0.22	 0.07	 0.002	 Dec	 ‐0.13	 0.06	 0.03	

Region3	 n/a	 n/a	 n/a	 Region3	 n/a	 n/a	 n/a	
Region4	 ‐0.56	 0.57	 0.32	 Region4	 0.73	 0.57	 0.20	
Region5	 ‐0.46	 0.61	 0.45	 Region5	 0.29	 0.62	 0.64	
Region7	 n/a	 n/a	 n/a	 Region7	 n/a	 n/a	 n/a	
Region8	 n/a	 n/a	 n/a	 Region8	 n/a	 n/a	 n/a	
Region10	 0.36	 0.57	 0.53	 Region10	 0.89  0.57  0.12 

Region11	 0.89	 0.37	 0.02	 Region11	 0.64  0.38  0.09 

Region12	 1.51	 0.35	 <0.0001 Region12	 0.86  0.35  0.015 

Region13	 3.02	 0.34	 <0.0001 Region13	 1.22  0.34  0.0004 

Region14	 2.77	 0.35	 <0.0001 Region14	 1.14  0.35  0.001 

Region15	 3.67	 0.34	 <0.0001 Region15	 1.45  0.36  <0.0001
Region16	 2.99	 0.35	 <0.0001 Region16	 1.01  0.35  0.004 

Region17 1.41	 0.37	 0.0001	 Region17 0.76  0.37  0.042 

Secchi	 ‐1.42	 0.05	 <0.0001 Secchi	 ‐0.49  0.05  <0.0001
Model	A7:	Binomial	null	deviance	=	12170.5	with	22%	explained.	Model	A14:	lognormal	null	
deviance	=	2816.0	with	10%	explained.	
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Table	B2.	Longfin	smelt	

(A)			

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐	
Jun	

12826.3	 20.3	 17091.1	 0.0	

A	2	
Historical	Outflow,	

Mar‐May	
12936.1	 130.1	 17193.3	 102.2	

A	3	
Unimpaired	Outflow,	

Jan‐Jun	 12808.4	 2.3	 17099.7	 8.6	

A	4	
Unimpaired	Outflow,	

Mar‐May	 12968.8	 162.7	 17208.3	 117.3	

A	5	
Historical	Inflow,	Jan‐	

Jun	 12838.6	 32.6	 17154.0	 63.0	

A	6	
Historical	Inflow,	Mar‐	

May	 12950.7	 144.7	 17253.0	 162.0	

A	7	
Unimpaired	Inflow,	

Jan‐Jun	 12806.1	 0.0	 17154.7	 63.7	

A	8	
Unimpaired	Inflow,	

Mar‐May	 12996.2	 190.1	 17266.5	 175.4	

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	

13253.9	 447.9	 17401.3	 310.2	

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	 13272.7	 466.7	 17393.1	 302.1	

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	 13269.3	 463.3	 17383.8	 292.7	

A	12	
Unimpaired	Outflow,	

Mar‐May	 13265.4	 459.3	 17389.0	 297.9	

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	
13268.9	 462.8	 17389.5	 298.4	

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	 13267.6	 461.5	 17388.6	 297.6	

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 13271.8	 465.7	 17379.6	 288.5	

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	

13263.0	 457.0	 17397.2	 306.1	
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	(B)	Longfin	smelt	
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐value
0	 ‐1.47	 0.11	 <0.0001 0 1.09	 0.11	 <0.0001

Unimp.Inflow.Jan‐
Jun	

0.48	 0.02	 <0.0001 Hist.Outflow.Jan‐
Jun	

0.40	 0.02	 <0.0001

Oct	 0.36	 0.06	 <0.0001 Oct 0.37	 0.07	 <0.0001
Nov	 1.09	 0.06	 <0.0001 Nov	 0.35	 0.07	 <0.0001
Dec	 1.70	 0.06	 <0.0001 Dec	 0.18	 0.06	 0.003	

Region3	 ‐0.69	 0.15	 <0.0001 Region3	 0.08	 0.16	 0.59	
Region4	 ‐0.76	 0.16	 <0.0001 Region4	 ‐0.47	 0.17	 0.004	
Region5	 ‐0.85	 0.18	 <0.0001 Region5	 ‐0.87	 0.19	 <0.0001
Region7	 ‐1.15	 0.20	 <0.0001 Region7	 ‐0.46	 0.23	 0.047	
Region8	 ‐0.17	 0.14	 0.22	 Region8	 0.50	 0.15	 0.001	
Region10	 ‐0.79	 0.23	 0.001	 Region10	 ‐0.37	 0.23	 0.11	
Region11	 0.06	 0.13	 0.66	 Region11	 ‐0.17	 0.12	 0.18	
Region12	 0.46	 0.12	 0.0001	 Region12	 0.30	 0.11	 0.01	
Region13	 0.03	 0.11	 0.79	 Region13	 0.08	 0.11	 0.45	
Region14	 ‐0.54	 0.13	 <0.0001 Region14	 ‐0.29	 0.12	 0.02	
Region15	 ‐0.48	 0.12	 <0.0001 Region15	 ‐0.38	 0.12	 0.002	
Region16	 ‐1.56	 0.13	 <0.0001 Region16	 ‐0.92	 0.14	 <0.0001
Region17 ‐3.64	 0.25	 <0.0001 Region17 ‐1.11	 0.34	 <0.0001
Secchi	 ‐1.38	 0.04	 <0.0001 Secchi	 ‐0.94	 0.04	 <0.0001

Model	A7:	Binomial	null	deviance	=	17971.0	with	29%	explained.	Model	A1:	lognormal	null	deviance	=	
13278.0	with	24%	explained.	
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Table	B3.	Sacramento	splittail	
(A)			

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐	
Jun	

3008.9	 4.2	 837.3	 2.4	

A	2	
Historical	Outflow,	

Mar‐May	 3008.0	 3.4	 840.0	 5.2	

A	3	
Unimpaired	Outflow,	

Jan‐Jun	 3009.7	 5.1	 838.6	 3.7	

A	4	
Unimpaired	Outflow,	

Mar‐May	 3034.1	 29.5	 840.7	 5.8	

A	5	
Historical	Inflow,	Jan‐	

Jun	
3008.2	 3.5	 837.2	 2.3	

A	6	
Historical	Inflow,	Mar‐	

May	 3014.0	 9.4	 840.3	 5.4	

A	7	
Unimpaired	Inflow,	

Jan‐Jun	 3004.6	 0.0	 837.2	 2.3	

A	8	
Unimpaired	Inflow,	

Mar‐May	 3036.5	 31.8	 840.2	 5.3	

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	 3123.2	 118.5	 834.9	 0.0	

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	 3121.1	 116.5	 841.0	 6.1	

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	 3123.8	 119.1	 837.4	 2.5	

A	12	
Unimpaired	Outflow,	

Mar‐May	
3119.3	 114.7	 840.9	 6.0	

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	 3123.7	 119.1	 836.0	 1.1	

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	 3118.8	 114.2	 840.6	 5.7	

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 3122.9	 118.2	 838.5	 3.6	

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	

3115.8	 111.2	 840.6	 5.7	
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	(B)	Sacramento	splittail	
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐
value	

0	 ‐6.01	 0.60	 <0.0001 0 ‐0.12	 0.35 0.74	
Unimp.Inflow.Jan‐

Jun	
0.56	 0.05	 <0.0001 Hist.Outflow.Jan‐

Jun.1yrLag	
0.06	 0.02 0.01	

Oct	 ‐0.25	 0.13	 0.06	 Oct ‐0.06	 0.07 0.39	
Nov	 ‐0.47	 0.15	 0.002	 Nov	 ‐0.04	 0.08 0.60	
Dec	 ‐0.56	 0.14	 <0.0001 Dec	 ‐0.16	 0.08 0.04	

Region3	 n/s	 n/s	 n/s	 Region3	 n/s	 n/s	 n/s	
Region4	 0.83	 0.70	 0.24	 Region4	 0.41	 0.40 0.31	
Region5	 0.77	 0.74	 0.30	 Region5	 0.63	 0.43 0.14	
Region7	 n/s	 n/s	 n/s	 Region7	 n/s	 n/s	 n/s	
Region8	 n/s	 n/s	 n/s	 Region8	 n/s	 n/s	 n/s	
Region10	 2.15	 0.69	 0.002	 Region10	 0.69	 0.39 0.08	
Region11	 1.39	 0.62	 0.02	 Region11	 0.48	 0.36 0.18	
Region12	 1.52	 0.60	 0.01	 Region12	 0.26	 0.35 0.45	
Region13	 1.56	 0.59	 0.01	 Region13	 0.20	 0.34 0.57	
Region14	 2.68	 0.59	 <0.0001 Region14	 0.46	 0.34 0.18	
Region15	 1.46	 0.61	 0.02	 Region15	 0.16	 0.35 0.66	
Region16	 1.27	 0.63	 0.04	 Region16	 0.13	 0.36 0.71	
Region17 ‐0.25	 0.82	 0.76	 Region17 0.06	 0.48 0.91	
Secchi	 ‐1.90	 0.13	 <0.0001 Secchi	 ‐0.19	 0.08 0.01	

Model	A7:	Binomial	null	deviance	=	3944.0	with	25%	explained.	Model	A9:	lognormal	null	deviance	=	173.5	
with	12%	explained.	
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Table	B4.	Starry	flounder	
(A)	

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐	
Jun	

3000.1	 0.0	 503.8	 4.5	

A	2	
Historical	Outflow,	

Mar‐May	 3006.4	 6.2	 503.1	 3.8	

A	3	
Unimpaired	Outflow,	

Jan‐Jun	 3001.8	 1.7	 503.7	 4.5	

A	4	
Unimpaired	Outflow,	

Mar‐May	 3006.6	 6.5	 503.1	 3.9	

A	5	
Historical	Inflow,	Jan‐	

Jun	
3002.3	 2.1	 503.9	 4.6	

A	6	
Historical	Inflow,	Mar‐	

May	 3007.1	 7.0	 503.5	 4.2	

A	7	
Unimpaired	Inflow,	

Jan‐Jun	 3002.4	 2.3	 503.8	 4.5	

A	8	
Unimpaired	Inflow,	

Mar‐May	 3006.6	 6.5	 503.6	 4.4	

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	 3005.4	 5.3	 503.2	 4.0	

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	 3007.4	 7.3	 502.7	 3.4	

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	 3006.3	 6.2	 502.3	 3.0	

A	12	
Unimpaired	Outflow,	

Mar‐May	
3007.7	 7.6	 499.3	 0.0	

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	 3004.9	 4.7	 502.9	 3.2	

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	 3007.6	 7.5	 501.8	 2.2	

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 3005.6	 5.5	 502.0	 2.4	

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	

3007.8	 7.6	 499.6	 0.0	
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(B)	Starry	flounder	
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐
value	

0	 ‐4.48	 0.37	 <0.0001 0 ‐0.01	 0.17 0.97	
Hist.Outflow.Jan‐

Jun	
0.14	 0.05	 0.01	 Unimp.Outflow.Mar‐

May.1yrLag	
0.06	 0.03 0.03	

Oct	 0.07	 0.14	 0.59	 Oct ‐0.01	 0.06 0.85	
Nov	 ‐0.16	 0.16	 0.30	 Nov	 ‐0.02	 0.07 0.82	
Dec	 ‐0.40	 0.15	 0.01	 Dec	 ‐0.01	 0.07 0.83	

Region3	 1.06	 0.43	 0.01	 Region3	 0.30	 0.19 0.11	
Region4	 1.33	 0.41	 0.001	 Region4	 0.54	 0.19 0.004	
Region5	 1.74	 0.41	 <0.0001 Region5	 0.39	 0.19 0.03	
Region7	 0.09	 0.62	 0.88	 Region7	 ‐0.03	 0.28 0.92	
Region8	 0.33	 0.51	 0.52	 Region8	 0.11	 0.23 0.62	
Region10	 1.00	 0.51	 0.05	 Region10	 0.35	 0.23 0.13	
Region11	 0.76	 0.40	 0.06	 Region11	 0.18	 0.18 0.31	
Region12	 0.89	 0.38	 0.02	 Region12	 0.36	 0.17 0.04	
Region13	 0.41	 0.38	 0.28	 Region13	 0.18	 0.17 0.29	
Region14	 0.15	 0.40	 0.70	 Region14	 0.03	 0.18 0.85	
Region15	 ‐0.70	 0.45	 0.12	 Region15	 0.12	 0.21 0.58	
Region16	 ‐1.96	 0.68	 0.004	 Region16	 0.58	 0.31 0.07	
Region17 n/a	 n/a	 n/a	 Region17 n/a	 n/a	 n/a	
Secchi	 ‐1.30	 0.12	 <0.0001 Secchi	 ‐0.04	 0.05 0.44	

Model	A1:	Binomial	null	deviance	=	3395.7	with	13%	explained.	Model	A12:	lognormal	null	deviance	=	84.1	
with	11%	explained.	
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Table	B5.	Threadfin	shad	
(A)	

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐Jun	 13486.8	 0.0	 13666.3  0.0 

A	2	
Historical	Outflow,	

Mar‐May	 13561.7	 74.9	 13671.2  4.9 

A	3	
Unimpaired	Outflow,	

Jan‐Jun	
13542.8	 56.0	 13670.0  3.7 

A	4	
Unimpaired	Outflow,	

Mar‐May	 13586.1	 99.3	 13671.1  4.8 

A	5	
Historical	Inflow,	Jan‐	

Jun	 13500.9	 14.0	 13668.4  2.1 

A	6	
Historical	Inflow,	Mar‐	

May	 13569.5	 82.7	 13670.8  4.5 

A	7	
Unimpaired	Inflow,	

Jan‐Jun	 13539.2	 52.4	 13670.7  4.4 

A	8	
Unimpaired	Inflow,	

Mar‐May	 13585.4	 98.6	 13670.89  4.6 

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	 13582.9	 96.0	 13669.04  2.7 

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	

13602.3	 115.4	 13670.93  4.6 

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	 13578.2	 91.4	 13670.28  4.0 

A	12	
Unimpaired	Outflow,	

Mar‐May	 13590.0	 103.1	 13671.27  5.0 

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	 13583.7	 96.9	 13668.7  2.4 

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	
13602.4	 115.6	 13670.94  4.6 

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 13581.1	 94.2	 13670.1  3.8 

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	 13589.3	 102.5	 13671.01  4.7 
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(B)	Threadfin	shad	
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐value
0	 ‐2.68	 0.13	 <0.0001 0 0.86	 0.16	 <0.0001

Hist.Outflow.Jan‐Jun	 0.23	 0.02	 <0.0001 Hist.Outflow.Jan‐Jun 0.04	 0.02	 0.03	
Oct	 0.41	 0.06	 <0.0001 Oct 0.01	 0.06	 0.87	
Nov	 0.98	 0.06	 <0.0001 Nov	 ‐0.07	 0.06	 0.26	
Dec	 1.34	 0.06	 <0.0001 Dec	 ‐0.21	 0.06	 0.00	

Region3	 ‐0.47	 0.19	 0.01	 Region3	 0.17	 0.22	 0.46	
Region4	 0.02	 0.19	 0.90	 Region4	 0.02	 0.21	 0.92	
Region5	 ‐0.06	 0.21	 0.77	 Region5	 0.14	 0.25	 0.56	
Region7	 0.09	 0.22	 0.68	 Region7	 ‐0.06	 0.25	 0.82	
Region8	 ‐0.80	 0.20	 <0.0001 Region8	 0.10	 0.25	 0.69	
Region10	 ‐0.17	 0.27	 0.54	 Region10	 ‐0.41	 0.31	 0.19	
Region11	 ‐0.09	 0.16	 0.56	 Region11	 ‐0.14	 0.18	 0.44	
Region12	 ‐0.36	 0.15	 0.01	 Region12	 ‐0.30	 0.17	 0.08	
Region13	 0.18	 0.14	 0.18	 Region13	 ‐0.11	 0.16	 0.47	
Region14	 0.94	 0.14	 <0.0001 Region14	 0.32	 0.16	 0.04	
Region15	 1.66	 0.14	 <0.0001 Region15	 0.46	 0.15	 0.003	
Region16	 2.12	 0.14	 <0.0001 Region16	 0.78	 0.15	 <0.0001
Region17 2.97	 0.14	 <0.0001 Region17 2.29	 0.16	 <0.0001
Secchi	 ‐0.74	 0.04	 <0.0001 Secchi	 ‐0.17	 0.04	 <0.0001

Model	A1:	Binomial	null	deviance	=	16877.0	with	20%	explained.	Model	A1:	lognormal	null	deviance	=	9796.9	
with	30%	explained.	
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Table	B6.	Crangon	spp.		
(A)	

Model	 Flow	variable	 Binomial	
AIC	

Binomial	
AIC	

Lognormal	
AIC	

Lognormal	
AIC	

A1	
Historical	Outflow,	

Jan‐	
Jun	

11347.2	 35.4	 13259.4	 0.0	

A	2	
Historical	Outflow,	

Mar‐May	 11327.7	 16.0	 13306.6	 47.3	

A	3	
Unimpaired	Outflow,	

Jan‐Jun	 11350.9	 39.2	 13276.3	 16.9	

A	4	
Unimpaired	Outflow,	

Mar‐May	 11311.7	 0.0	 13335.9	 76.5	

A	5	
Historical	Inflow,	Jan‐	

Jun	
11349.0	 37.2	 13292.3	 32.9	

A	6	
Historical	Inflow,	Mar‐	

May	 11332.9	 21.1	 13335.0	 75.6	

A	7	
Unimpaired	Inflow,	

Jan‐Jun	 11355.6	 43.8	 13301.4	 42.1	

A	8	
Unimpaired	Inflow,	

Mar‐May	 11317.8	 6.1	 13359.4	 100.0	

A	9	
Historical	Outflow,	
Jan‐Jun,	1yr	Lag	 11365.1	 53.3	 13390.4	 131.0	

A	10	
Historical	Outflow,	
Mar‐May,	1yr	Lag	 11350.3	 38.6	 13390.3	 131.0	

A	11	
Unimpaired	Outflow,	
Jan‐Jun,	1yr	Lag	 11366.5	 54.8	 13394.0	 134.6	

A	12	
Unimpaired	Outflow,	

Mar‐May	
11347.5	 35.8	 13392.5	 133.1	

A	13	
Historical	Inflow,	Jan‐

Jun,	1yr	Lag	 11357.8	 46.1	 13392.7	 133.3	

A	14	
Historical	Inflow,	Mar‐

May,	1yr	Lag	 11341.3	 29.6	 13390.5	 131.2	

A	15	
Unimpaired	Inflow,	
Jan‐Jun,	1yr	Lag	 11364.2	 52.4	 13395.4	 136.0	

A	16	
Unimpaired	Inflow,	
Mar‐May,	1yr	Lag	

11337.4	 25.6	 13394.4	 135.0	
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(B)	Crangon	spp.	
Binomial	Component	 Lognormal	Component	

Parameter		 Estimate	 SE	 p‐value Parameter		 Estimate	 SE	 p‐value
0	 ‐0.96	 0.11 <0.0001 0 2.95	 0.14	 <0.0001

Unimp.Outflow.Mar‐
May	

‐0.19	 0.02 <0.0001 Hist.Outflow.Jan‐
Jun	

0.36	 0.03	 <0.0001

Oct	 ‐0.08	 0.07 0.22	 Oct ‐0.01	 0.08	 0.85	
Nov	 0.04	 0.07 0.52	 Nov	 ‐0.47	 0.08	 <0.0001
Dec	 ‐0.29	 0.06 <0.0001 Dec	 ‐0.90	 0.08	 <0.0001

Region3	 ‐1.21	 0.17 <0.0001 Region3	 0.04	 0.24	 0.85	
Region4	 ‐1.57	 0.18 <0.0001 Region4	 ‐0.99	 0.25	 <0.0001
Region5	 ‐1.86	 0.22 <0.0001 Region5	 ‐1.69	 0.31	 <0.0001
Region7	 ‐2.59	 0.33 <0.0001 Region7	 ‐1.45	 0.51	 0.005	
Region8	 ‐0.62	 0.16 0.0001	 Region8	 0.50	 0.22	 0.02	
Region10	 ‐1.24	 0.24 <0.0001 Region10	 ‐1.06	 0.33	 0.001	
Region11	 0.31	 0.13 0.01	 Region11	 ‐0.10	 0.15	 0.50	
Region12	 0.36	 0.12 0.002	 Region12	 ‐0.04	 0.14	 0.76	
Region13	 ‐0.36	 0.11 0.001	 Region13	 ‐0.38	 0.14	 0.01	
Region14	 ‐1.10	 0.13 <0.0001 Region14	 ‐1.08	 0.16	 <0.0001
Region15	 ‐1.24	 0.13 <0.0001 Region15	 ‐0.37	 0.16	 0.02	
Region16	 ‐2.16	 0.15 <0.0001 Region16	 ‐1.99	 0.21	 <0.0001
Region17 n/a	 n/a	 n/a	 Region17 n/a	 n/a	 n/a	
Secchi	 ‐1.78	 0.05 <0.0001 Secchi	 ‐1.08	 0.06	 <0.0001

Model	A4:	Binomial	null	deviance	=	14730.9	with	32%	explained.	Model	A1:	lognormal	null	deviance	=	
12128.9	with	37%	explained.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


